Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question:Suppose you fit the first-order model y=β0+β1x1+β2x2+β3x3+β4x4+β5x5+εto n=30 data points and obtain SSE = 0.33 and R2=0.92

(A) Do the values of SSE and R2suggest that the model provides a good fit to the data? Explain.

(B) Is the model of any use in predicting Y ? Test the null hypothesis H0:β1=β2=β3=β4=β5=0 against the alternative hypothesis {H}at least one of the parameters β1,β2,...,β5 is non zero.Useα=0.05 .

Short Answer

Expert verified

(A) Low value of SSE and high value of R2 indicate that the model is a good fit to the data.

(B) At 95% confidence interval, it can be concluded that Hα:β1=β2=β3=β4=β5=0

Step by step solution

01

Step-by-Step Solution Step 1: Good fit to the data

A low sum of squares of error values like 0.33 indicate that the there is low variability in the set of observations. It means that the data points are close to the model fitted. Also, high value like 0.92 forR2indicates that around 92% of the variation in the data is explained by the model which is a good thing.

Hence, we can say that SSE = 0.33 andis a good measure of good fit to the data.

02

Overall significance of the model

H0:β1=β2=β3=β4=β5=0

Ha:At least one of the parameters β1,β2,...,β5is non zero

Here, F test statistic =SSEn-(k+1)=0.3330-6=0.01375

Value ofF0.05,24,24is 1.984

H0is rejected if F statistic > F0.05,24,24For α=0.05, since F <F0.05,24,24

Do not have sufficient evidence to reject H0 at 95% confidence interval.

Therefore,β1=β2=β3=β4=β5=0

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a multiple regression model for a response y, with one quantitative independent variable x1 and one qualitative variable at three levels.

a. Write a first-order model that relates the mean response E(y) to the quantitative independent variable.

b. Add the main effect terms for the qualitative independent variable to the model of part a. Specify the coding scheme you use.

c. Add terms to the model of part b to allow for interaction between the quantitative and qualitative independent variables.

d. Under what circumstances will the response lines of the model in part c be parallel?

e. Under what circumstances will the model in part c have only one response line?

Suppose the mean value E(y) of a response y is related to the quantitative independent variables x1and x2

E(y)=2+x1-3x2-x1x2

a) Identify and interpret the slope forx2

b) Plot the linear relationship between E(y) andx2for role="math" localid="1649796003444" x1=0,1,2, whererole="math" localid="1649796025582" 1x23

c) How would you interpret the estimated slopes?

d) Use the lines you plotted in part b to determine the changes in E(y) for eachrole="math" localid="1649796051071" x1=0,1,2.

e) Use your graph from part b to determine how much E(y) changes whenrole="math" localid="1649796075921" 3x15androle="math" localid="1649796084395" 1x23.

Forecasting movie revenues with Twitter. Refer to the IEEE International Conference on Web Intelligence and Intelligent Agent Technology (2010) study on using the volume of chatter on Twitter.com to forecast movie box office revenue, Exercise 12.10 (p. 723). The researchers modelled a movie’s opening weekend box office revenue (y) as a function of tweet rate (x1 ) and ratio of positive to negative tweets (x2) using a first-order model.

a) Write the equation of an interaction model for E(y) as a function of x1 and x2 .

b) In terms of theβ in the model, part a, what is the change in revenue (y) for every 1-tweet increase in the tweet rate (x1 ) , holding PN-ratio (x2)constant at a value of 2.5?

c) In terms of the in the model, part a, what is the change in revenue (y) for every 1-tweet increase in the tweet rate (x1 ) , holding PN-ratio (x2)constant at a value of 5.0?

d) In terms of theβ in the model, part a, what is the change in revenue (y) for every 1-unit increase in the PN-ratio (x2) , holding tweet rate (x1 )constant at a value of 100?

e) Give the null hypothesis for testing whether tweet rate (x1 ) and PN-ratio (x2) interact to affect revenue (y).

Impact of race on football card values. University of Colorado sociologists investigated the impact of race on the value of professional football players’ “rookie” cards (Electronic Journal of Sociology, 2007). The sample consisted of 148 rookie cards of National Football League (NFL) players who were inducted into the Football Hall of Fame. The price of the card (in dollars) was modeled as a function of several qualitative independent variables: race of player (black or white), card availability (high or low), and player position (quarterback, running back, wide receiver, tight end, defensive lineman, linebacker, defensive back, or offensive lineman).

  1. Create the appropriate dummy variables for each of the qualitative independent variables.
  2. Write a model for price (y) as a function of race. Interpret theβ’s in the model.
  3. Write a model for price (y) as a function of card availability. Interpret theβ’s in the model.
  4. Write a model for price (y) as a function of position. Interpret theβ’s in the model.

Question: Personality traits and job performance. Refer to the Journal of Applied Psychology (Jan. 2011) study of the relationship between task performance and conscientiousness, Exercise 12.54 (p. 747). Recall that the researchers used a quadratic model to relate y = task performance score (measured on a 30-point scale) to x1 = conscientiousness score (measured on a scale of -3 to +3). In addition, the researchers included job complexity in the model, where x2 = {1 if highly complex job, 0 if not}. The complete model took the form

E(y)=β0+β1x1+β2x12+β3x2+β4x1x2+β5x12x2herex2=1E(y)=β0+β1x1+β2x12+β3(1)+β4x1(1)+β5(1)2(1)E(y)=(β0+β3)+(β1+β4)x1+(β2+β5)(x1)2

a. For jobs that are not highly complex, write the equation of the model for E1y2 as a function of x1. (Substitute x2 = 0 into the equation.)

b. Refer to part a. What do each of the b’s represent in the model?

c. For highly complex jobs, write the equation of the model for E(y) as a function of x1. (Substitute x2 = 1 into the equation.)

d. Refer to part c. What do each of the b’s represent in the model?

e. Does the model support the researchers’ theory that the curvilinear relationship between task performance score (y) and conscientiousness score (x1) depends on job complexity (x2)? Explain.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free