Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question:Consider the first-order model equation in three quantitative independent variables E(Y)=2-3x1+5x2-x3

  1. Graph the relationship between Y and x3for x1=2 and x2=1
  2. Repeat part a for x1=1and x2=-2
  3. How do the graphed lines in parts a and b relate to each other? What is the slope of each line?
  4. If a linear model is first-order in three independent variables, what type of geometric relationship will you obtain when is graphed as a function of one of the independent variables for various combinations of the other independent variables?

Short Answer

Expert verified

(A) Graph

(B) Graph

(C) The two lines are parallel to each other where the slope of the lines is -1.

(D) The geometric relationship between E(Y) and any independent variable for various combinations of other variables will be a linear relationship.

Step by step solution

01

Step-by-Step SolutionStep 1: Graph

Given, E(Y)=2-3x1+5x2-x3for x1=2and x2=1

y=2-3(2)+5(1)-x3

y=1-x3

Now to plot this equation, we make a table

Y

1

0

X3

0

1

02

Graph

Given,

E(Y)=2-3x1+5x2-x3for x1=1 and x2=-2

y=2-3(1)+5(-2)-x3y=-11-x3

Now to plot this equation, we make a table

Y

-11

0

X3

0

-11

03

Relationship between the two graphs

From the two graphs, it is visible that the two lines are parallel to each other. The slope of for both the lines is -1 with the intercept value changing for part (a) and part (b). In part (a) the intercept value was 1 while in part (b) the intercept value is -11

04

Geometric relationship between   and any independent variable

The geometric relationship between and any independent variable for various combinations of other variables will be a linear relationship.

Any linear model which is a first-order model in three independent variables will also have a linear geometric relationship betweenand any independent variable for various combinations of other variables.

The first order linear model means that it’s a linear regression model where the variables’ maximum power in the model is 1.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Write a regression model relating E(y) to a qualitative independent variable that can assume three levels. Interpret all the terms in the model.

Question: Tipping behaviour in restaurants. Can food servers increase their tips by complimenting the customers they are waiting on? To answer this question, researchers collected data on the customer tipping behaviour for a sample of 348 dining parties and reported their findings in the Journal of Applied Social Psychology (Vol. 40, 2010). Tip size (y, measured as a percentage of the total food bill) was modelled as a function of size of the dining party(x1)and whether or not the server complimented the customers’ choice of menu items (x2). One theory states that the effect of the size of the dining party on tip size is independent of whether or not the server compliments the customers’ menu choices. A second theory hypothesizes that the effect of size of the dining party on tip size is greater when the server compliments the customers’ menu choices as opposed to when the server refrains from complimenting menu choices.

a. Write a model for E(y) as a function of x1 and x2 that corresponds to Theory 1.

b. Write a model for E(y) as a function of x1and x2that corresponds to Theory 2.

c. The researchers summarized the results of their analysis with the following graph. Based on the graph, which of the two models would you expect to fit the data better? Explain.

Question: Orange juice demand study. A chilled orange juice warehousing operation in New York City was experiencing too many out-of-stock situations with its 96-ounce containers. To better understand current and future demand for this product, the company examined the last 40 days of sales, which are shown in the table below. One of the company’s objectives is to model demand, y, as a function of sale day, x (where x = 1, 2, 3, c, 40).

  1. Construct a scatterplot for these data.
  2. Does it appear that a second-order model might better explain the variation in demand than a first-order model? Explain.
  3. Fit a first-order model to these data.
  4. Fit a second-order model to these data.
  5. Compare the results in parts c and d and decide which model better explains variation in demand. Justify your choice.

Catalytic converters in cars. A quadratic model was applied to motor vehicle toxic emissions data collected in Mexico City (Environmental Science & Engineering, Sept. 1, 2000). The following equation was used to predict the percentage (y) of motor vehicles without catalytic converters in the Mexico City fleet for a given year (x): β^2

a. Explain why the valueβ^0=325790has no practical interpretation.

b. Explain why the valueβ^1=-321.67should not be Interpreted as a slope.

c. Examine the value ofβ^2to determine the nature of the curvature (upward or downward) in the sample data.

d. The researchers used the model to estimate “that just after the year 2021 the fleet of cars with catalytic converters will completely disappear.” Comment on the danger of using the model to predict y in the year 2021. (Note: The model was fit to data collected between 1984 and 1999.)

Question: Bus Rapid Transit study. Bus Rapid Transit (BRT) is a rapidly growing trend in the provision of public transportation in America. The Center for Urban Transportation Research (CUTR) at the University of South Florida conducted a survey of BRT customers in Miami (Transportation Research Board Annual Meeting, January 2003). Data on the following variables (all measured on a 5-point scale, where 1 = very unsatisfied and 5 = very satisfied) were collected for a sample of over 500 bus riders: overall satisfaction with BRT (y), safety on bus (x1), seat availability (x2), dependability (x3), travel time (x4), cost (x5), information/maps (x6), convenience of routes (x7), traffic signals (x8), safety at bus stops (x9), hours of service (x10), and frequency of service (x11). CUTR analysts used stepwise regression to model overall satisfaction (y).

a. How many models are fit at step 1 of the stepwise regression?

b. How many models are fit at step 2 of the stepwise regression?

c. How many models are fit at step 11 of the stepwise regression?

d. The stepwise regression selected the following eight variables to include in the model (in order of selection): x11, x4, x2, x7, x10, x1, x9, and x3. Write the equation for E(y) that results from stepwise regression.

e. The model, part d, resulted in R2 = 0.677. Interpret this value.

f. Explain why the CUTR analysts should be cautious in concluding that the best model for E(y) has been found.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free