Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Catalytic converters in cars. A quadratic model was applied to motor vehicle toxic emissions data collected in Mexico City (Environmental Science & Engineering, Sept. 1, 2000). The following equation was used to predict the percentage (y) of motor vehicles without catalytic converters in the Mexico City fleet for a given year (x): β^2

a. Explain why the valueβ^0=325790has no practical interpretation.

b. Explain why the valueβ^1=-321.67should not be Interpreted as a slope.

c. Examine the value ofβ^2to determine the nature of the curvature (upward or downward) in the sample data.

d. The researchers used the model to estimate “that just after the year 2021 the fleet of cars with catalytic converters will completely disappear.” Comment on the danger of using the model to predict y in the year 2021. (Note: The model was fit to data collected between 1984 and 1999.)

Short Answer

Expert verified

a. Since, our x variable is a time concept it cannot be zero, hence, we cannot practically interpret the value.

b. The percentage of motor vehicles (y) without catalytic converters for a given year (x) is predicted here. When x goes up by 1-unit, y according to the question decreases by 321.67 units. But since we are measuring y in percentage form this number is not reliable and thus should not be interpreted as a slope.

c. The value ofβ^2 is coming out to be 0.0794. A positive value here denotes that the curve is upward sloping.

d. The model was fit to data collected between 1984 and 1999. The researchers want to use the regression equation to predict y in the year 2021. Using the model to predict y in the year 2021 will not give very accurate results as almost 20 years have passed and the variables and their relationship with y changes over due period of time.

Step by step solution

01

Interpretation of β0

Here, the value of β^1is 325,790. β0represent the y-intercept and the value here 325,790 denotes no of motor vehicles without catalytic converters in the Mexico City fleet for a given year. Since, our x variable is a time concept it cannot be zero, hence, we cannot practically interpret the value.

02

Simplification of β1

The percentage of motor vehicles (y) without catalytic converters for a given year (x) is predicted here. When x goes up by 1-unit, y according to the question decreases by 321.67 units. But since we are measuring y in percentage form this number is not reliable and thus should not be interpreted as a slope.

03

Clarification of β2

The value ofβ^2 is coming out to be 0.0794. A positive value here denotes that the curve is upward sloping.

04

Prediction

The model was fit to data collected between 1984 and 1999. The researchers want to use the regression equation to predict y in the year 2021. Using the model to predict y in the year 2021 will not give very accurate results as almost 20 years have passed and the variables and their relationship with y changes overdue period of time.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

State casket sales restrictions. Some states permit only licensed firms to sell funeral goods (e.g., caskets, urns) to the consumer, while other states have no restrictions. States with casket sales restrictions are being challenged in court to lift these monopolistic restrictions. A paper in the Journal of Law and Economics (February 2008) used multiple regression to investigate the impact of lifting casket sales restrictions on the cost of a funeral. Data collected for a sample of 1,437 funerals were used to fit the model. A simpler version of the model estimated by the researchers is E(y)=β0+β1x1+β2x2+β3x1x2, where y is the price (in dollars) of a direct burial, x1 = {1 if funeral home is in a restricted state, 0 if not}, and x2 = {1 if price includes a basic wooden casket, 0 if no casket}. The estimated equation (with standard errors in parentheses) is:

y^=1432 + 793x1- 252x2+ 261x1x2, R2= 0.78

(70) (134) (109)

  1. Calculate the predicted price of a direct burial with a basic wooden casket at a funeral home in a restricted state.

  2. The data include a direct burial funeral with a basic wooden casket at a funeral home in a restricted state that costs \(2,200. Assuming the standard deviation of the model is \)50, is this data value an outlier?

  3. The data also include a direct burial funeral with a basic wooden casket at a funeral home in a restricted state that costs \(2,500. Again, assume that the standard deviation of the model is \)50. Is this data value an outlier?

Question: The complete modelE(y)=β0+β1x1+β2x2+β3x3+β4x4+εwas fit to n = 20 data points, with SSE = 152.66. The reduced model,E(y)=β0+β1x1+β2x2+ε, was also fit, with

SSE = 160.44.

a. How many β parameters are in the complete model? The reduced model?

b. Specify the null and alternative hypotheses you would use to investigate whether the complete model contributes more information for the prediction of y than the reduced model.

c. Conduct the hypothesis test of part b. Use α = .05.

Question: Revenues of popular movies. The Internet Movie Database (www.imdb.com) monitors the gross revenues for all major motion pictures. The table on the next page gives both the domestic (United States and Canada) and international gross revenues for a sample of 25 popular movies.

  1. Write a first-order model for foreign gross revenues (y) as a function of domestic gross revenues (x).
  2. Write a second-order model for international gross revenues y as a function of domestic gross revenues x.
  3. Construct a scatterplot for these data. Which of the models from parts a and b appears to be the better choice for explaining the variation in foreign gross revenues?
  4. Fit the model of part b to the data and investigate its usefulness. Is there evidence of a curvilinear relationship between international and domestic gross revenues? Try usingα=0.05.
  5. Based on your analysis in part d, which of the models from parts a and b better explains the variation in international gross revenues? Compare your answer with your preliminary conclusion from part c.

When a multiple regression model is used for estimating the mean of the dependent variable and for predicting a new value of y, which will be narrower—the confidence interval for the mean or the prediction interval for the new y-value? Why?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free