Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Reality TV and cosmetic surgery. Refer to the Body Image: An International Journal of Research (March 2010) study of the impact of reality TV shows on one’s desire to undergo cosmetic surgery, Exercise 12.17 (p. 725). Recall that psychologists used multiple regression to model desire to have cosmetic surgery (y) as a function of gender(x1) , self-esteem(x2) , body satisfaction(x3) , and impression of reality TV (x4). The SPSS printout below shows a confidence interval for E(y) for each of the first five students in the study.

  1. Interpret the confidence interval for E(y) for student 1.
  2. Interpret the confidence interval for E(y) for student 4

Short Answer

Expert verified

(a) The confidence interval for E(y) for student 1 here is (13.42, 14.31) which can be interpreted as the population mean or average desire to have cosmetic surgery will be between the interval (13.42, 14.31) for student 1.

(b) The confidence interval for E(y) for student 4 here is (8.79, 10.89) which can be interpreted as the population mean or average desire to have cosmetic surgery will be between the interval (8.79, 10.89) for student 4.

Step by step solution

01

Step-by-Step SolutionStep 1: Interpretation of confidence interval for the population mean

Student 1’s desire to have cosmetic surgery can be computed at 11. The confidence interval for E(y) for student 1 here is (13.42, 14.31) which can be interpreted as the population mean or average desire to have cosmetic surgery will be between the interval (13.42, 14.31) for student 1.

02

Explanation of confidence interval for the population mean

Student 4’s desire to have cosmetic surgery is represented as 11. The confidence interval for E(y) for student 4 here is (8.79, 10.89) which can be interpreted as the population mean or average desire to have cosmetic surgery will be between the interval (8.79, 10.89) for student 4

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Shopping on Black Friday. Refer to the International Journal of Retail and Distribution Management (Vol. 39, 2011) study of shopping on Black Friday (the day after Thanksgiving), Exercise 6.16 (p. 340). Recall that researchers conducted interviews with a sample of 38 women shopping on Black Friday to gauge their shopping habits. Two of the variables measured for each shopper were age (x) and number of years shopping on Black Friday (y). Data on these two variables for the 38 shoppers are listed in the accompanying table.

  1. Fit the quadratic model, E(y)=β0+β1x+β2x2, to the data using statistical software. Give the prediction equation.
  2. Conduct a test of the overall adequacy of the model. Use α=0.01.
  3. Conduct a test to determine if the relationship between age (x) and number of years shopping on Black Friday (y) is best represented by a linear or quadratic function. Use α=0.01.

Question: The Excel printout below resulted from fitting the following model to n = 15 data points: y=β0+β1x1+β2x2+ε

Where,

x1=(1iflevel20ifnot)x2=(1iflevel30ifnot)

Can money spent on gifts buy love? Refer to the Journal of Experimental Social Psychology (Vol. 45, 2009) study of whether buying gifts truly buys love, Exercise 9.9 (p. 529). Recall those study participants were randomly assigned to play the role of gift-giver or gift-receiver. Gift-receivers were asked to provide the level of appreciation (measured on a 7-point scale where 1 = “not at all” and 7 = “to a great extent”) they had for the last birthday gift they received from a loved one. Gift-givers were asked to recall the last birthday gift they gave to a loved one and to provide the level of appreciation the loved one had for the gift.

  1. Write a dummy variable regression model that will allow the researchers to compare the average level of appreciation for birthday gift-giverswith the average for birthday gift-receivers.
  2. Express each of the model’s β parameters in terms ofand.
  3. The researchers hypothesize that the average level of appreciation is higher for birthday gift-givers than for birthday gift-receivers. Explain how to test this hypothesis using the regression model.

Question: Risk management performance. An article in the International Journal of Production Economics (Vol. 171, 2016) investigated the factors associated with a firm’s supply chain risk management performance (y). Five potential independent variables (all measured quantitatively) were considered: (1) firm size, (2) supplier orientation, (3) supplier dependency, (4) customer orientation, and (5) systemic purchasing. Consider running a stepwise regression to find the best subset of predictors for risk management performance.

a. How many 1-variable models are fit in step 1 of the stepwise regression?

b. Assume supplier orientation is selected in step 1. How many 2-variable models are fit in step 2 of the stepwise regression?

c. Assume systemic purchasing is selected in step 2. How many 3-variable models are fit in step 3 of the stepwise regression?

d. Assume customer orientation is selected in step 3. How many 4-variable models are fit in step 4 of the stepwise regression?

e. Through the first 4 steps of the stepwise regression, determine the total number of t-tests performed. Assuming each test uses an a = .05 level of significance, give an estimate of the probability of at least one Type I error in the stepwise regression.

Question: Chemical plant contamination. Refer to Exercise 12.18 (p. 725) and the U.S. Army Corps of Engineers study. You fit the first-order model,E(Y)=β0+β1x1+β2x2+β3x3 , to the data, where y = DDT level (parts per million),X1= number of miles upstream,X2= length (centimeters), andX3= weight (grams). Use the Excel/XLSTAT printout below to predict, with 90% confidence, the DDT level of a fish caught 300 miles upstream with a length of 40 centimeters and a weight of 1,000 grams. Interpret the result.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free