Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider relating E(y) to two quantitative independent variables x1 and x2.

  1. Write a first-order model for E(y).

  2. Write a complete second-order model for E(y).

Short Answer

Expert verified
  1. A first-order model for E(y) with two quantitative variables x1 and x2 can be written asEy=β0+β1x1+β2x2+ε.

  2. A Second-order model for E(y) with two quantitative variables x1 and x2 can be written as Ey=β0+β1x1+β2x2+β3x12+β4x22+ε

Step by step solution

01

First-order model for E(y)

A first-order model for E(y) with two quantitative variables x1 and x2 can be written asEy=β0+β1x1+β2x2+ε.

02

Second-order model for E(y)

A Second-order model for E(y) with two quantitative variables x1 and x2 can be written as Ey=β0+β1x1+β2x2+β3x12+β4x22+ε.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Production technologies, terroir, and quality of Bordeaux wine. In addition to state-of-the-art technologies, the production of quality wine is strongly influenced by the natural endowments of the grape-growing region—called the “terroir.” The Economic Journal (May 2008) published an empirical study of the factors that yield a quality Bordeaux wine. A quantitative measure of wine quality (y) was modeled as a function of several qualitative independent variables, including grape-picking method (manual or automated), soil type (clay, gravel, or sand), and slope orientation (east, south, west, southeast, or southwest).

  1. Create the appropriate dummy variables for each of the qualitative independent variables.
  2. Write a model for wine quality (y) as a function of grape-picking method. Interpret theβ’s in the model.
  3. Write a model for wine quality (y) as a function of soil type. Interpret theβ’s in the model.
  4. Write a model for wine quality (y) as a function of slope orientation. Interpret theβ’s in the model.

Question: Accuracy of software effort estimates. Periodically, software engineers must provide estimates of their effort in developing new software. In the Journal of Empirical Software Engineering (Vol. 9, 2004), multiple regression was used to predict the accuracy of these effort estimates. The dependent variable, defined as the relative error in estimating effort, y = (Actual effort - Estimated effort)/ (Actual effort) was determined for each in a sample of n = 49 software development tasks. Eight independent variables were evaluated as potential predictors of relative error using stepwise regression. Each of these was formulated as a dummy variable, as shown in the table.

Company role of estimator: x1 = 1 if developer, 0 if project leader

Task complexity: x2 = 1 if low, 0 if medium/high

Contract type: x3 = 1 if fixed price, 0 if hourly rate

Customer importance: x4 = 1 if high, 0 if low/medium

Customer priority: x5 = 1 if time of delivery, 0 if cost or quality

Level of knowledge: x6 = 1 if high, 0 if low/medium

Participation: x7 = 1 if estimator participates in work, 0 if not

Previous accuracy: x8 = 1 if more than 20% accurate, 0 if less than 20% accurate

a. In step 1 of the stepwise regression, how many different one-variable models are fit to the data?

b. In step 1, the variable x1 is selected as the best one- variable predictor. How is this determined?

c. In step 2 of the stepwise regression, how many different two-variable models (where x1 is one of the variables) are fit to the data?

d. The only two variables selected for entry into the stepwise regression model were x1 and x8. The stepwise regression yielded the following prediction equation:

Give a practical interpretation of the β estimates multiplied by x1 and x8.

e) Why should a researcher be wary of using the model, part d, as the final model for predicting effort (y)?

When a multiple regression model is used for estimating the mean of the dependent variable and for predicting a new value of y, which will be narrower—the confidence interval for the mean or the prediction interval for the new y-value? Why?

Question: The complete modelE(y)=β0+β1x1+β2x2+β3x3+β4x4+εwas fit to n = 20 data points, with SSE = 152.66. The reduced model,E(y)=β0+β1x1+β2x2+ε, was also fit, with

SSE = 160.44.

a. How many β parameters are in the complete model? The reduced model?

b. Specify the null and alternative hypotheses you would use to investigate whether the complete model contributes more information for the prediction of y than the reduced model.

c. Conduct the hypothesis test of part b. Use α = .05.

Question: The Excel printout below resulted from fitting the following model to n = 15 data points: y=β0+β1x1+β2x2+ε

Where,

x1=(1iflevel20ifnot)x2=(1iflevel30ifnot)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free