Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose you fit the model y =β0+β1x1+β1x22+β3x2+β4x1x2+εto n = 25 data points with the following results:

β^0=1.26,β^1= -2.43,β^2=0.05,β^3=0.62,β^4=1.81sβ^1=1.21,sβ^2=0.16,sβ^3=0.26, sβ^4=1.49SSE=0.41 and R2=0.83

  1. Is there sufficient evidence to conclude that at least one of the parameters b1, b2, b3, or b4 is nonzero? Test using a = .05.

  2. Test H0: β1 = 0 against Ha: β1 < 0. Use α = .05.

  3. Test H0: β2 = 0 against Ha: β2 > 0. Use α = .05.

  4. Test H0: β3 = 0 against Ha: β3 ≠ 0. Use α = .05.

Short Answer

Expert verified
  1. At 95% confidence interval, it can be concluded thatβ1=β2=β3=β4=0

  2. At 95% confidence interval, it can be concluded thatβ1=0 .

  3. At 95% confidence interval, it can be concluded thatβ2=0 .

4. At 95% confidence interval, it can be concluded that β3≠0 .

Step by step solution

01

Goodness of fit test

H0:β1=β2=β3=β4=0

Ha: At least one of the parametersβ1,β2,β3, andβ4is non zero

Here, F test statistic =SSEn-(k+1)=0.4125-5=0.0205

Value of F0.05,25,25 is 1.964

H0 is rejected if F statistic > F0.05,28,28. For α=0.05, since F < F0.05,28,28 Not sufficient evidence to reject Ho at 95% confidence interval.

Therefore, β1=β2=β3=β4=0 .

02

Significance of β

H0: β1=0

Ha: β1< 0

Here, t-test statistic = β^1sβ^1=-2.431.21=-2.008

Value oft0.05,25is 1.708

H0 is rejected if t statistic > t0.05,25. For α=0.05, since t < t0.05,25 Not sufficient evidence to reject Ho at 95% confidence interval.

Therefore, β1=0 .

03

Significance of β3

H0:β2= 0

Ha:β2> 0

Here, t-test statistic = β^2sβ^2=0.050.16=0.3125

Value oft0.05,25is 1.708

H0is rejected if t statistic > t0.05,25. For α = 0.05, since t < t0.05,31Not sufficient evidence to rejectHoat 95% confidence interval.

Therefore, β2=0 .

04

Significance of β3

H0:β3=0

Ha: β3≠0

Here, t-test statistic =β^3sβ^3=0.620.26=2.38461

Value oft0.025,25is 2.060

H0is rejected if t statistic > t0.05,24,24. For α = 0.05, since t>t0.05,31 Sufficient evidence to rejectHoat 95% confidence interval.

Therefore, β3≠0 .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Ascorbic acid reduces goat stress. Refer to the Animal Science Journal (May, 2014) study on the use of ascorbic acid (AA) to reduce stress in goats during transportation from farm to market, Exercise 9.12 (p. 529). Recall that 24 healthy goats were randomly divided into four groups (A, B, C, and D) of six animals each. Goats in group A were administered a dosage of AA 30 minutes prior to transportation; goats in group B were administered a dosage of AA 30 minutes following transportation; group C goats were not given any AA prior to or following transportation; and, goats in group D were not given any AA and were not transported. Weight was measured before and after transportation and the weight loss (in kilograms) determined for each goat.

  1. Write a model for mean weight loss, E(y), as a function of the AA dosage group (A, B, C, or D). Use group D as the base level.
  2. Interpret the’s in the model, part a.
  3. Recall that the researchers discovered that mean weight loss is reduced in goats administered AA compared to goats not given any AA. On the basis of this result, determine the sign (positive or negative) of as many of the’s in the model, part a, as possible.

Question: Do blondes raise more funds? Refer to the Economic Letters (Vol. 100, 2008) study of whether the color of a female solicitor’s hair impacts the level of capital raised, Exercise 12.75 (p. 756). Recall that 955 households were contacted by a female solicitor to raise funds for hazard mitigation research. In addition to the household’s level of contribution (in dollars) and the hair color of the solicitor (blond Caucasian, brunette Caucasian, or minority female), the researcher also recorded the beauty rating of the solicitor (measured quantitatively, on a 10-point scale).

  1. Write a first-order model (with no interaction) for mean contribution level, E(y), as a function of a solicitor’s hair color and her beauty rating.
  2. Refer to the model, part a. For each hair color, express the change in contribution level for each 1-point increase in a solicitor’s beauty rating in terms of the model parameters.
  3. Write an interaction model for mean contribution level, E(y), as a function of a solicitor’s hair color and her beauty rating.
  4. Refer to the model, part c. For each hair color, express the change in contribution level for each 1-point increase in a solicitor’s beauty rating in terms of the model parameters.
  5. Refer to the model; part c. Illustrate the interaction with a graph.

Commercial refrigeration systems. The role of maintenance in energy saving in commercial refrigeration was the topic of an article in the Journal of Quality in Maintenance Engineering (Vol. 18, 2012). The authors provided the following illustration of data relating the efficiency (relative performance) of a refrigeration system to the fraction of total charges for cooling the system required for optimal performance. Based on the data shown in the graph (next page), hypothesize an appropriate model for relative performance (y) as a function of fraction of charge (x). What is the hypothesized sign (positive or negative) of the β2parameter in the model?

Suppose you fit the quadratic model E(y)=β0+β1x+β2x2to a set of n = 20 data points and found R2=0.91, SSyy=29.94, and SSE = 2.63.

a. Is there sufficient evidence to indicate that the model contributes information for predicting y? Test using a = .05.

b. What null and alternative hypotheses would you test to determine whether upward curvature exists?

c. What null and alternative hypotheses would you test to determine whether downward curvature exists?

Production technologies, terroir, and quality of Bordeaux wine. In addition to state-of-the-art technologies, the production of quality wine is strongly influenced by the natural endowments of the grape-growing region—called the “terroir.” The Economic Journal (May 2008) published an empirical study of the factors that yield a quality Bordeaux wine. A quantitative measure of wine quality (y) was modeled as a function of several qualitative independent variables, including grape-picking method (manual or automated), soil type (clay, gravel, or sand), and slope orientation (east, south, west, southeast, or southwest).

  1. Create the appropriate dummy variables for each of the qualitative independent variables.
  2. Write a model for wine quality (y) as a function of grape-picking method. Interpret theβ’s in the model.
  3. Write a model for wine quality (y) as a function of soil type. Interpret theβ’s in the model.
  4. Write a model for wine quality (y) as a function of slope orientation. Interpret theβ’s in the model.
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free