Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose you have developed a regression model to explain the relationship between y and x1, x2, and x3. The ranges of the variables you observed were as follows: 10 ≤ y ≤ 100, 5 ≤ x1 ≤ 55, 0.5 ≤ x2 ≤ 1, and 1,000 ≤ x3 ≤ 2,000. Will the error of prediction be smaller when you use the least squares equation to predict y when x1 = 30, x2 = 0.6, and x3 = 1,300, or when x1 = 60, x2 = 0.4, and x3 = 900? Why?

Short Answer

Expert verified

Therefore, when predicting y values, the error of prediction will be smaller when x1 = 30, x2 = 0.6, and x3 = 1300 since the values of independent variables are well within the range described in the question.

Step by step solution

01

Range of independent variables

The range of x1, x2, and x3is given as 5 ≤ x1≤ 55, 0.5 ≤ x2≤ 1, and 1,000 ≤ x3≤ 2,000. When x1= 30, x2= 0.6, and x3= 1300, all the variables x1,x2and x3are well within the range of values. While when x1= 60, x2= 0.4, and x3= 900, x1and x2are out of the range and x3is within the range.

02

Conclusion

Therefore, when predicting y values, the error of prediction will be smaller when x1 = 30, x2 = 0.6, and x3 = 1300.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Suppose you fit the first-order multiple regression model y=β0+β1x1+β2x2+ε to n=25 data points and obtain the prediction equationy^=6.4+3.1x1+0.92x2 . The estimated standard deviations of the sampling distributions of β1 and β2are 2.3 and .27, respectively

Question: Reality TV and cosmetic surgery. Refer to the Body Image: An International Journal of Research (March 2010) study of the impact of reality TV shows on one’s desire to undergo cosmetic surgery, Exercise 12.17 (p. 725). Recall that psychologists used multiple regression to model desire to have cosmetic surgery (y) as a function of gender(x1) , self-esteem(x2) , body satisfaction(x3) , and impression of reality TV (x4). The SPSS printout below shows a confidence interval for E(y) for each of the first five students in the study.

  1. Interpret the confidence interval for E(y) for student 1.
  2. Interpret the confidence interval for E(y) for student 4

Goal congruence in top management teams. Do chief executive officers (CEOs) and their top managers always agree on the goals of the company? Goal importance congruence between CEOs and vice presidents (VPs) was studied in the Academy of Management Journal (Feb. 2008). The researchers used regression to model a VP’s attitude toward the goal of improving efficiency (y) as a function of the two quantitative independent variables level of CEO (x1)leadership and level of congruence between the CEO and the VP (x2). A complete second-order model in x1and x2was fit to data collected for n = 517 top management team members at U.S. credit unions.

a. Write the complete second-order model for E(y).

b. The coefficient of determination for the model, part a, was reported asR2=0.14. Interpret this value.

c. The estimate of theβ-value for the(x2)2term in the model was found to be negative. Interpret this result, practically.

d. A t-test on theβ-value for the interaction term in the model,x1x2, resulted in a p-value of 0.02. Practically interpret this result, usingα=0.05.

Question: Predicting elements in aluminum alloys. Aluminum scraps that are recycled into alloys are classified into three categories: soft-drink cans, pots and pans, and automobile crank chambers. A study of how these three materials affect the metal elements present in aluminum alloys was published in Advances in Applied Physics (Vol. 1, 2013). Data on 126 production runs at an aluminum plant were used to model the percentage (y) of various elements (e.g., silver, boron, iron) that make up the aluminum alloy. Three independent variables were used in the model: x1 = proportion of aluminum scraps from cans, x2 = proportion of aluminum scraps from pots/pans, and x3 = proportion of aluminum scraps from crank chambers. The first-order model, , was fit to the data for several elements. The estimates of the model parameters (p-values in parentheses) for silver and iron are shown in the accompanying table.

(A) Is the overall model statistically useful (at α = .05) for predicting the percentage of silver in the alloy? If so, give a practical interpretation of R2.

(b)Is the overall model statistically useful (at a = .05) for predicting the percentage of iron in the alloy? If so, give a practical interpretation of R2.

(c)Based on the parameter estimates, sketch the relationship between percentage of silver (y) and proportion of aluminum scraps from cans (x1). Conduct a test to determine if this relationship is statistically significant at α = .05.

(d)Based on the parameter estimates, sketch the relationship between percentage of iron (y) and proportion of aluminum scraps from cans (x1). Conduct a test to determine if this relationship is statistically significant at α = .05.

Question: Manipulating rates of return with stock splits. Some firms have been accused of using stock splits to manipulate their stock prices before being acquired by another firm. An article in Financial Management (Winter 2008) investigated the impact of stock splits on long-run stock performance for acquiring firms. A simplified version of the model fit by the researchers follows:

E(y)=β0+β1x1+β2x2+β3x1x2

where

y = Firm’s 3-year buy-and-hold return rate (%)

x1 = {1 if stock split prior to acquisition, 0 if not}

x2 = {1 if firm’s discretionary accrual is high, 0 if discretionary accrual is low}

a. In terms of the β’s in the model, what is the mean buy and- hold return rate (BAR) for a firm with no stock split and a high discretionary accrual (DA)?

b. In terms of the β’s in the model, what is the mean BAR for a firm with no stock split and a low DA?

c. For firms with no stock split, find the difference between the mean BAR for firms with high and low DA. (Hint: Use your answers to parts a and b.)

d. Repeat part c for firms with a stock split.

e. Note that the differences, parts c and d, are not the same. Explain why this illustrates the notion of interaction between x1 and x2.

f. A test for H0: β3 = 0 yielded a p-value of 0.027. Using α = .05, interpret this result.

g. The researchers reported that the estimated values of both β2 and β3 are negative. Consequently, they conclude that “high-DA acquirers perform worse compared with low-DA acquirers. Moreover, the underperformance is even greater if high-DA acquirers have a stock split before acquisition.” Do you agree?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free