Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Accuracy of software effort estimates. Refer to the Journal of Empirical Software Engineering (Vol. 9, 2004) study of the accuracy of new software effort estimates, Exercise 12.114 (p. 781). Recall that stepwise regression was used to develop a model for the relative error in estimating effort (y) as a function of company role of estimator (x1 = 1 if developer, 0 if project leader) and previous accuracy (x8 = 1 if more than 20% accurate, 0 if less than 20% accurate). The stepwise regression yielded the prediction equation y^= 0.12 - 0.28x1+ 0.27x8. The researcher is concerned that the sign of the estimated β multiplied by x1 is the opposite from what is expected. (The researcher expects a project leader to have a smaller relative error of estimation than a developer.) Give at least one reason why this phenomenon occurred.

Short Answer

Expert verified

The estimated sign for β for x1 is positive (the developer has a larger relative error of estimation than a project leader) but the prediction equation estimated using step-wise regression is negative sign of x1. A possible reason for the same could be the existence of multicollinearity in the model.

Step by step solution

01

Reason for opposite sign

The estimated sign for β for x1 is positive (the developer has a larger relative error of estimation than a project leader) but the prediction equation estimated using step-wise regression is negative sign of x1. A possible reason for the same could be the existence of multicollinearity in the model.

02

Rationale behind opposite sign

Since there is high degree of correlation amongst relative error in estimating effort (y) and company role of estimator (x1) the β estimates will not be true parameter indicators and will be biased.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Cooling method for gas turbines. Refer to the Journal of Engineering for Gas Turbines and Power (January 2005) study of a high-pressure inlet fogging method for a gas turbine engine, Exercise 12.19 (p. 726). Consider a model for heat rate (kilojoules per kilowatt per hour) of a gas turbine as a function of cycle speed (revolutions per minute) and cycle pressure ratio. The data are saved in the file.

a. Write a complete second-order model for heat rate (y).

b. Give the null and alternative hypotheses for determining whether the curvature terms in the complete second-order model are statistically useful for predicting heat rate (y).

c. For the test in part b, identify the complete and reduced model.

d. The complete and reduced models were fit and compared using SPSS. A summary of the results are shown in the accompanying SPSS printout. Locate the value of the test statistic on the printout.

e. Find the rejection region for α = .10 and locate the p-value of the test on the printout.

f. State the conclusion in the words of the problem.


Question: Suppose the mean value E(y) of a response y is related to the quantitative independent variables x1and x2

E(y)=2+x1-3x2-x1x2

a. Identify and interpret the slope forx2.

b. Plot the linear relationship between E(y) andx2forx1=0,1,2, where.

c. How would you interpret the estimated slopes?

d. Use the lines you plotted in part b to determine the changes in E(y) for each x1=0,1,2.

e. Use your graph from part b to determine how much E(y) changes when3x15and1x23.

Question:Suppose you fit the first-order model y=β0+β1x1+β2x2+β3x3+β4x4+β5x5+εto n=30 data points and obtain SSE = 0.33 and R2=0.92

(A) Do the values of SSE and R2suggest that the model provides a good fit to the data? Explain.

(B) Is the model of any use in predicting Y ? Test the null hypothesis H0:β1=β2=β3=β4=β5=0 against the alternative hypothesis {H}at least one of the parameters β1,β2,...,β5 is non zero.Useα=0.05 .

Question: Revenues of popular movies. The Internet Movie Database (www.imdb.com) monitors the gross revenues for all major motion pictures. The table on the next page gives both the domestic (United States and Canada) and international gross revenues for a sample of 25 popular movies.

  1. Write a first-order model for foreign gross revenues (y) as a function of domestic gross revenues (x).
  2. Write a second-order model for international gross revenues y as a function of domestic gross revenues x.
  3. Construct a scatterplot for these data. Which of the models from parts a and b appears to be the better choice for explaining the variation in foreign gross revenues?
  4. Fit the model of part b to the data and investigate its usefulness. Is there evidence of a curvilinear relationship between international and domestic gross revenues? Try usingα=0.05.
  5. Based on your analysis in part d, which of the models from parts a and b better explains the variation in international gross revenues? Compare your answer with your preliminary conclusion from part c.

Question: Suppose you fit the interaction model y=β0+β1x1+β2x2+β3x1x2+ε to n = 32 data points and obtain the following results:SSyy=479,SSE=21,β^3=10, and sβ^3=4

a. Find R2and interpret its value.

b. Is the model adequate for predicting y? Test at α=.05

c. Use a graph to explain the contribution of the x1 , x2 term to the model.

d. Is there evidence that x1and x2 interact? Test at α=.05 .

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free