Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Tipping behaviour in restaurants. Can food servers increase their tips by complimenting the customers they are waiting on? To answer this question, researchers collected data on the customer tipping behaviour for a sample of 348 dining parties and reported their findings in the Journal of Applied Social Psychology (Vol. 40, 2010). Tip size (y, measured as a percentage of the total food bill) was modelled as a function of size of the dining party(x1)and whether or not the server complimented the customers’ choice of menu items (x2). One theory states that the effect of the size of the dining party on tip size is independent of whether or not the server compliments the customers’ menu choices. A second theory hypothesizes that the effect of size of the dining party on tip size is greater when the server compliments the customers’ menu choices as opposed to when the server refrains from complimenting menu choices.

a. Write a model for E(y) as a function of x1 and x2 that corresponds to Theory 1.

b. Write a model for E(y) as a function of x1and x2that corresponds to Theory 2.

c. The researchers summarized the results of their analysis with the following graph. Based on the graph, which of the two models would you expect to fit the data better? Explain.

Short Answer

Expert verified

a. The model under theory 1 would be y=β0+β1x1+β2x2+ε

b. The model under theory 2 would be y=β0+β1x1+β2x2+β3x1x2+ε

c. To maintain a constant tipping percentage is a priority, therefore, model 1 would be preferred as a way to predict the tipping percentage.

Step by step solution

01

Model for E(y) according to theory 1

Theory 1 suggests that the effect of the size of the dining party (denoted by x1) on the tip size is independent of whether or not the server compliments the customer’s menu choices (denoted by x2).

Therefore, the model under theory 1 would be y=β0+β1x1+β2x2+ε

Where,x1=size of the dining party

and x2 = server complimenting the customer’s menu choices

02

Model for E(y) according to theory 2

Theory 2 suggests that the effect of size of the dining party (denoted by x1 ) on the tip size is greater when the server compliments the customers’ menu choices (denoted by x2) as opposed to when the server refrains from complimenting menu choices. Here the two variables have some dependency amongst them, hence, a new variable x1,x2will be introduced in the model to represent this dependency.

Therefore, the model under theory 2 would berole="math" localid="1649842923237" y=β0+β1x1+β2x2+β3x1x2

where,x1=size of the dining party

and x2 = server complimenting the customer’s menu choices

03

Comparison of two models

As can be seen in the graph, the tip percentage stays constant as the numbers in the party increase when the servers do not compliment customers’ menu choices. While the tip percentage declines when the server compliments the customers’ menu choices when numbers in the party increase.

To maintain a constant tipping percentage is a priority, therefore, model 1 would be preferred as a way to predict the tipping percentage.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Job performance under time pressure. Refer to the Academy of Management Journal (October 2015) study of how time pressure affects team job performance, Exercise 12.89 (p. 765). Recall that the researchers hypothesized a complete second-order model relating team performance (y) to perceived time pressure (x1), and whether or not the team had an effective leader (x2 = 1 if yes, 0 if no):

E(Y)=β0+β1x1+β2x22+β3x2+β4x1x2+β5x12x2

a) How would you determine whether the rate of increase of team performance with time pressure depends on effectiveness of the team leader?

b) For fixed time pressure, how would you determine whether the mean team performance differs for teams with effective and non-effective team leaders?

Question: Glass as a waste encapsulant. Because glass is not subject to radiation damage, encapsulation of waste in glass is considered to be one of the most promising solutions to the problem of low-level nuclear waste in the environment. However, chemical reactions may weaken the glass. This concern led to a study undertaken jointly by the Department of Materials Science and Engineering at the University of Florida and the U.S. Department of Energy to assess the utility of glass as a waste encapsulant. Corrosive chemical solutions (called corrosion baths) were prepared and applied directly to glass samples containing one of three types of waste (TDS-3A, FE, and AL); the chemical reactions were observed over time. A few of the key variables measured were

y = Amount of silicon (in parts per million) found in solution at end of experiment. (This is both a measure of the degree of breakdown in the glass and a proxy for the amount of radioactive species released into the environment.)

x1 = Temperature (°C) of the corrosion bath

x2 = 1 if waste type TDS-3A, 0 if not

x3 = 1 if waste type FE, 0 if not

(Waste type AL is the base level.) Suppose we want to model amount y of silicon as a function of temperature (x1) and type of waste (x2, x3).

a. Write a model that proposes parallel straight-line relationships between amount of silicon and temperature, one line for each of the three waste types.

b. Add terms for the interaction between temperature and waste type to the model of part a.

c. Refer to the model of part b. For each waste type, give the slope of the line relating amount of silicon to temperature.

e. Explain how you could test for the presence of temperature–waste type interaction.

Question: Cooling method for gas turbines. Refer to the Journal of Engineering for Gas Turbines and Power (January 2005) study of a high-pressure inlet fogging method for a gas turbine engine, Exercise 12.19 (p. 726). Consider a model for heat rate (kilojoules per kilowatt per hour) of a gas turbine as a function of cycle speed (revolutions per minute) and cycle pressure ratio. The data are saved in the file.

a. Write a complete second-order model for heat rate (y).

b. Give the null and alternative hypotheses for determining whether the curvature terms in the complete second-order model are statistically useful for predicting heat rate (y).

c. For the test in part b, identify the complete and reduced model.

d. The complete and reduced models were fit and compared using SPSS. A summary of the results are shown in the accompanying SPSS printout. Locate the value of the test statistic on the printout.

e. Find the rejection region for α = .10 and locate the p-value of the test on the printout.

f. State the conclusion in the words of the problem.


Question: Manipulating rates of return with stock splits. Some firms have been accused of using stock splits to manipulate their stock prices before being acquired by another firm. An article in Financial Management (Winter 2008) investigated the impact of stock splits on long-run stock performance for acquiring firms. A simplified version of the model fit by the researchers follows:

E(y)=β0+β1x1+β2x2+β3x1x2

where

y = Firm’s 3-year buy-and-hold return rate (%)

x1 = {1 if stock split prior to acquisition, 0 if not}

x2 = {1 if firm’s discretionary accrual is high, 0 if discretionary accrual is low}

a. In terms of the β’s in the model, what is the mean buy and- hold return rate (BAR) for a firm with no stock split and a high discretionary accrual (DA)?

b. In terms of the β’s in the model, what is the mean BAR for a firm with no stock split and a low DA?

c. For firms with no stock split, find the difference between the mean BAR for firms with high and low DA. (Hint: Use your answers to parts a and b.)

d. Repeat part c for firms with a stock split.

e. Note that the differences, parts c and d, are not the same. Explain why this illustrates the notion of interaction between x1 and x2.

f. A test for H0: β3 = 0 yielded a p-value of 0.027. Using α = .05, interpret this result.

g. The researchers reported that the estimated values of both β2 and β3 are negative. Consequently, they conclude that “high-DA acquirers perform worse compared with low-DA acquirers. Moreover, the underperformance is even greater if high-DA acquirers have a stock split before acquisition.” Do you agree?

Consider fitting the multiple regression model

E(y)= β0+β1x1+ β2x2+β3x3+ β4x4 +β5x5

A matrix of correlations for all pairs of independent variables is given below. Do you detect a multicollinearity problem? Explain


See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free