Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Suppose you fit the interaction model y=β0+β1x1+β2x2+β3x1x2+ε to n = 32 data points and obtain the following results:SSyy=479,SSE=21,β^3=10, and sβ^3=4

a. Find R2and interpret its value.

b. Is the model adequate for predicting y? Test at α=.05

c. Use a graph to explain the contribution of the x1 , x2 term to the model.

d. Is there evidence that x1and x2 interact? Test at α=.05 .

Short Answer

Expert verified

a. The value of R2close to 95% indicates that almost 95% of the variation in the variables can be explained by the model.

b. At 95% confidence interval, it can be concluded that β1=β2=β3=0

c. Graph

d. At 95% confidence interval,β3θ . Hence it can be concluded with enough evidence that x1and x2interact in the model.

Step by step solution

01

Determining  R2

R2=1-SSESSyy=1-21479=0.95615

The value ofR2close to 95% indicates that almost 95% of the variation in the variables can be explained by the model.

02

Goodness of the model fit 

H0:β1=β2=β3=0

Ha:At least one of the parameters β1,β2,β3 is non zero

Here, F test statistic =SSen-(k+1)=2132-4=0.75

Value of F0.05,28,28 is 1.915

H0is rejected if F statistic > F0.05,28,28. For α=0.05, since F < F0.05,28,28

We do not have sufficient evidence to reject H0 at a 95% confidence interval.

Therefore, β1=β2=β3=0

03

Graph

When there’s an interaction term in the model, the model is estimated assuming one variable constant, and the relationship between the dependent and the other independent variable is plotted given the value of an independent variable.

In this case, two lines are plotted, where one line is drawn assuming x2 as constant K1 and the other line is drawn assuming x1 constant as t1 Since these two variables are interacting, it can be seen in the graph that the regression lines will interact at some point on the Cartesian graph.

04

Significance of  β3

H0:β3=0

H0:β30

Here, t-test statistic =β^3sβ^3=104=2.5

Value of t0.05,31 is 1.6955

x1H0is rejected if statistic >t0.05,24,24. For, Since t > t0.05,31

Sufficient evidence to reject H0 at 95% confidence interval.

Therefore,β34 . Hene it can be concluded with enough evidence that x1 and x2 interact in the model.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Orange juice demand study. A chilled orange juice warehousing operation in New York City was experiencing too many out-of-stock situations with its 96-ounce containers. To better understand current and future demand for this product, the company examined the last 40 days of sales, which are shown in the table below. One of the company’s objectives is to model demand, y, as a function of sale day, x (where x = 1, 2, 3, c, 40).

  1. Construct a scatterplot for these data.
  2. Does it appear that a second-order model might better explain the variation in demand than a first-order model? Explain.
  3. Fit a first-order model to these data.
  4. Fit a second-order model to these data.
  5. Compare the results in parts c and d and decide which model better explains variation in demand. Justify your choice.

Question: Failure times of silicon wafer microchips. Refer to the National Semiconductor study of manufactured silicon wafer integrated circuit chips, Exercise 12.63 (p. 749). Recall that the failure times of the microchips (in hours) was determined at different solder temperatures (degrees Celsius). The data are repeated in the table below.

  1. Fit the straight-line modelEy=β0+β1xto the data, where y = failure time and x = solder temperature.

  2. Compute the residual for a microchip manufactured at a temperature of 149°C.

  3. Plot the residuals against solder temperature (x). Do you detect a trend?

  4. In Exercise 12.63c, you determined that failure time (y) and solder temperature (x) were curvilinearly related. Does the residual plot, part c, support this conclusion?

Ascorbic acid reduces goat stress. Refer to the Animal Science Journal (May, 2014) study on the use of ascorbic acid (AA) to reduce stress in goats during transportation from farm to market, Exercise 9.12 (p. 529). Recall that 24 healthy goats were randomly divided into four groups (A, B, C, and D) of six animals each. Goats in group A were administered a dosage of AA 30 minutes prior to transportation; goats in group B were administered a dosage of AA 30 minutes following transportation; group C goats were not given any AA prior to or following transportation; and, goats in group D were not given any AA and were not transported. Weight was measured before and after transportation and the weight loss (in kilograms) determined for each goat.

  1. Write a model for mean weight loss, E(y), as a function of the AA dosage group (A, B, C, or D). Use group D as the base level.
  2. Interpret the’s in the model, part a.
  3. Recall that the researchers discovered that mean weight loss is reduced in goats administered AA compared to goats not given any AA. On the basis of this result, determine the sign (positive or negative) of as many of the’s in the model, part a, as possible.

Question: Bordeaux wine sold at auction. The uncertainty of the weather during the growing season, the phenomenon that wine tastes better with age, and the fact that some vineyards produce better wines than others encourage speculation concerning the value of a case of wine produced by a certain vineyard during a certain year (or vintage). The publishers of a newsletter titled Liquid Assets: The International Guide to Fine Wine discussed a multiple regression approach to predicting the London auction price of red Bordeaux wine. The natural logarithm of the price y (in dollars) of a case containing a dozen bottles of red wine was modelled as a function of weather during growing season and age of vintage. Consider the multiple regression results for hypothetical data collected for 30 vintages (years) shown below.

  1. Conduct a t-test (atα=0.05 ) for each of the βparameters in the model. Interpret the results.
  2. When the natural log of y is used as a dependent variable, the antilogarithm of a b coefficient minus 1—that is ebi - 1—represents the percentage change in y for every 1-unit increase in the associated x-value. Use this information to interpret each of the b estimates.
  3. Interpret the values of R2and s. Do you recommend using the model for predicting Bordeaux wine prices? Explain

Question: Adverse effects of hot-water runoff. The Environmental Protection Agency (EPA) wants to determine whether the hot-water runoff from a particular power plant located near a large gulf is having an adverse effect on the marine life in the area. The goal is to acquire a prediction equation for the number of marine animals located at certain designated areas, or stations, in the gulf. Based on past experience, the EPA considered the following environmental factors as predictors for the number of animals at a particular station:

X1 = Temperature of water (TEMP)

X2 = Salinity of water (SAL)

X3 = Dissolved oxygen content of water (DO)

X4 = Turbidity index, a measure of the turbidity of the water (TI)

x5 = Depth of the water at the station (ST_DEPTH)

x6 = Total weight of sea grasses in sampled area (TGRSWT)

As a preliminary step in the construction of this model, the EPA used a stepwise regression procedure to identify the most important of these six variables. A total of 716 samples were taken at different stations in the gulf, producing the SPSS printout shown below. (The response measured was y, the logarithm of the number of marine animals found in the sampled area.)

a. According to the SPSS printout, which of the six independent variables should be used in the model? (Use α = .10.)

b. Are we able to assume that the EPA has identified all the important independent variables for the prediction of y? Why?

c. Using the variables identified in part a, write the first-order model with interaction that may be used to predict y.

d. How would the EPA determine whether the model specified in part c is better than the first-order model?

e.Note the small value of R2. What action might the EPA take to improve the model?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free