Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Diet of ducks bred for broiling. Corn is high in starch content; consequently, it is considered excellent feed for domestic chickens. Does corn possess the same potential in feeding ducks bred for broiling? This was the subject of research published in Animal Feed Science and Technology (April 2010). The objective of the study was to establish a prediction model for the true metabolizable energy (TME) of corn regurgitated from ducks. The researchers considered 11 potential predictors of TME: dry matter (DM), crude protein (CP), ether extract (EE), ash (ASH), crude fiber (CF), neutral detergent fiber (NDF), acid detergent fiber (ADF), gross energy (GE), amylose (AM), amylopectin (AP), and amylopectin/amylose (AMAP). Stepwise regression was used to find the best subset of predictors. The final stepwise model yielded the following results:

TME^=7.70+2.14(AMAP)+0.16(NDF), R2 = 0.988, s = .07, Global F p-value = .001

a. Determine the number of t-tests performed in step 1 of the stepwise regression.

b. Determine the number of t-tests performed in step 2 of the stepwise regression.

c. Give a full interpretation of the final stepwise model regression results.

d. Explain why it is dangerous to use the final stepwise model as the “best” model for predicting TME.

e. Using the independent variables selected by the stepwise routine, write a complete second-order model for TME.

f. Refer to part e. How would you determine if the terms in the model that allow for curvature are statistically useful for predicting TME?

Short Answer

Expert verified

Answer

a. There are 11 independent variables to be considered for the model. For step 1 of the stepwise regression, 11 1-variable models will be fitted to the data.

b. 10 2-variable models are fitted.

c. The final stepwise model here is which means that only two variables neutral detergent fiber (NDF) and amylopectin/amylose (AMAP) are finalized through the stepwise model. Both the β parameters are positive indicating that the variables have a positive relationship with y.

d. Precautions while using stepwise model - First, an extremely large number of t-tests have been conducted, leading to a high probability of making one or more Type I or Type II errors. Second, the stepwise model does not include any higher-order or interaction terms.

e. A complete second-order model for TME can be written as

TME^=β0+β1(AMAP)+β2(NDF)+β3(AMAP)2+β4(NDF)2+β5(AMAP)(NDF)

f. To check if the terms in the model allow for curvature or not can be done using hypothesis testing where the null and alternate hypothesis would be

H0:β3=β4=0and Ha: At least one of the β parameter is nonzero.

Step by step solution

01

Step 1 of stepwise regression

There are 11 independent variables to be considered for the model. For step 1 of the stepwise regression, 11 1-variable models will be fitted to the data.

02

Step 2 of stepwise regression

Since there are 11 independent variables, (k-1) no of models are 2-variable models are fitted in step 2 of stepwise regression.

So, 10 2-variable models are fitted.

03

Final stepwise model

The final stepwise model here is TME^=7.70+2.14(AMAP)+0.16(NDF)which means that only two variables neutral detergent fiber (NDF) and amylopectin/amylose (AMAP) are finalized through the stepwise model. Both the β parameters are positive indicating that the variables have a positive relationship with y.

04

Precautions while using stepwise model

Precautions while using stepwise model -

First, an extremely large number of t-tests have been conducted, leading to a high probability of making one or more Type I or Type II errors. Second, the stepwise model does not include any higher-order or interaction terms.

05

Complete second-order model

A complete second-order model for TME can be written asTME^=β0+β1(AMAP)+β2(NDF)+β3(AMAP)2+β4(NDF)2+β5(AMAP)(NDF)

06

Hypothesis testing

To check if the terms in the model allow for curvature or not can be done using hypothesis testing where the null and alternate hypothesis would be

H0:and Ha: β3=β4=0At least one of the β parameter is nonzero.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Consumer behavior while waiting in line. The Journal of Consumer Research (November 2003) published a study of consumer behavior while waiting in a queue. A sample of n = 148 college students was asked to imagine that they were waiting in line at a post office to mail a package and that the estimated waiting time is 10 minutes or less. After a 10-minute wait, students were asked about their level of negative feelings (annoyed, anxious) on a scale of 1 (strongly disagree) to 9 (strongly agree). Before answering, however, the students were informed about how many people were ahead of them and behind them in the line. The researchers used regression to relate negative feelings score (y) to number ahead in line (x1) and number behind in line (x2).

a.The researchers fit an interaction model to the data. Write the hypothesized equation of this model.

b. In the words of the problem, explain what it means to say that “x1 and x2 interact to affect y.”

c. A t-test for the interaction β in the model resulted in a p-value greater than 0.25. Interpret this result.

d. From their analysis, the researchers concluded that “the greater the number of people ahead, the higher the negative feeling score” and “the greater the number of people behind, the lower the negative feeling score.” Use this information to determine the signs of β1 and β2 in the model.

Consider a multiple regression model for a response y, with one quantitative independent variable x1 and one qualitative variable at three levels.

a. Write a first-order model that relates the mean response E(y) to the quantitative independent variable.

b. Add the main effect terms for the qualitative independent variable to the model of part a. Specify the coding scheme you use.

c. Add terms to the model of part b to allow for interaction between the quantitative and qualitative independent variables.

d. Under what circumstances will the response lines of the model in part c be parallel?

e. Under what circumstances will the model in part c have only one response line?

Can money spent on gifts buy love? Refer to the Journal of Experimental Social Psychology (Vol. 45, 2009) study of whether buying gifts truly buys love, Exercise 9.9 (p. 529). Recall those study participants were randomly assigned to play the role of gift-giver or gift-receiver. Gift-receivers were asked to provide the level of appreciation (measured on a 7-point scale where 1 = “not at all” and 7 = “to a great extent”) they had for the last birthday gift they received from a loved one. Gift-givers were asked to recall the last birthday gift they gave to a loved one and to provide the level of appreciation the loved one had for the gift.

  1. Write a dummy variable regression model that will allow the researchers to compare the average level of appreciation for birthday gift-giverswith the average for birthday gift-receivers.
  2. Express each of the model’s β parameters in terms ofand.
  3. The researchers hypothesize that the average level of appreciation is higher for birthday gift-givers than for birthday gift-receivers. Explain how to test this hypothesis using the regression model.

Personality traits and job performance. When attempting to predict job performance using personality traits, researchers typically assume that the relationship is linear. A study published in the Journal of Applied Psychology (Jan. 2011) investigated a curvilinear relationship between job task performance and a specific personality trait—conscientiousness. Using data collected for 602 employees of a large public organization, task performance was measured on a 30-point scale (where higher scores indicate better performance) and conscientiousness was measured on a scale of -3 to +3 (where higher scores indicate a higher level of conscientiousness).

a. The coefficient of correlation relating task performance score to conscientiousness score was reported as r = 0.18. Explain why the researchers should not use this statistic to investigate the curvilinear relationship between task performance and conscientiousness.

b. Give the equation of a curvilinear (quadratic) model relating task performance score (y) to conscientiousness score (x).

c. The researchers theorized that task performance increases as level of conscientiousness increases, but at a decreasing rate. Draw a sketch of this relationship.

d. If the theory in part c is supported, what is the expected sign ofβ2in the model, part b?

e. The researchers reportedβ^2=0.32with an associated p-value of less than 0.05. Use this information to test the researchers’ theory atα=0.05

Consider the following data that fit the quadratic modelE(y)=β0+β1x+β2x2:

a. Construct a scatterplot for this data. Give the prediction equation and calculate R2based on the model above.

b. Interpret the value ofR2.

c. Justify whether the overall model is significant at the 1% significance level if the data result into a p-value of 0.000514.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free