Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: There are six independent variables, x1, x2, x3, x4, x5, and x6, that might be useful in predicting a response y. A total of n = 50 observations is available, and it is decided to employ stepwise regression to help in selecting the independent variables that appear to be useful. The software fits all possible one-variable models of the form

E(Y)=β0+β1xi

where xi is the ith independent variable, i = 1, 2, …, 6. The information in the table is provided from the computer printout.

a. Which independent variable is declared the best one variable predictor of y? Explain.

b. Would this variable be included in the model at this stage? Explain.

c. Describe the next phase that a stepwise procedure would execute.

Short Answer

Expert verified

Answer

a. For x1, the t-value is the highest (3.80), x1 is the best one variable predictor of y.

b. Since x1 is the best one-variable predictor of y, the variable will be included in the model at this stage.

c. The stepwise program now begins to search through the remaining (k – 1) independent variables for the best two-variable model of the form. Therefore, here the program begins searching remaining 5 independent variables for the best two-variable model.

Step by step solution

01

One-variable best predictor

T-test values for testing of single β parameter isβi^sβi^

Here for x1, x2,x3,x4,x5,and x6t-values are 3.80, -90, 2.98, 1.21, -6.02, and 0.857 respectively. Since for x1, the t-value is the highest, x1 is the best one variable predictor of y.

02

Stepwise procedure

Since x1 is the best one-variable predictor of y, the variable will be included in the model at this stage.

03

Stepwise procedure

The stepwise program now begins to search through the remaining (k – 1) independent variables for the best two-variable model of the form. Therefore, here the program begins searching remaining 5 independent variables for the best two-variable model

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Identify the problem(s) in each of the residual plots shown below.

Question: Failure times of silicon wafer microchips. Researchers at National Semiconductor experimented with tin-lead solder bumps used to manufacture silicon wafer integrated circuit chips (International Wafer-Level Packaging Conference, November 3–4, 2005). The failure times of the microchips (in hours) were determined at different solder temperatures (degrees Celsius). The data for one experiment are given in the table. The researchers want to predict failure time (y) based on solder temperature (x).

  1. Construct a scatterplot for the data. What type of relationship, linear or curvilinear, appears to exist between failure time and solder temperature?
  2. Fit the model,E(y)=β0+β1x+β2x2, to the data. Give the least-squares prediction equation.
  3. Conduct a test to determine if there is upward curvature in the relationship between failure time and solder temperature. (use.α=0.05)

Minitab was used to fit the complete second-order modeE(y)=β0+β1x1+β2x2+β3x1x2+β4x12+β5x22to n = 39 data points. The printout is shown on the next page.

a. Is there sufficient evidence to indicate that at least one of the parameters—β1,β2,β3,β4, andβ1,β2,β3,β4—is nonzero? Test usingα=0.05.

b. TestH0:β4=0againstHa:β40. Useα=0.01.

c. TestH0:β5=0againstHa:β50. Useα=0.01.

d. Use graphs to explain the consequences of the tests in parts b and c.

Question:How is the number of degrees of freedom available for estimating σ2(the variance ofε ) related to the number of independent variables in a regression model?

Question: Shopping on Black Friday. Refer to the International Journal of Retail and Distribution Management (Vol. 39, 2011) study of shopping on Black Friday (the day after Thanksgiving), Exercise 6.16 (p. 340). Recall that researchers conducted interviews with a sample of 38 women shopping on Black Friday to gauge their shopping habits. Two of the variables measured for each shopper were age (x) and number of years shopping on Black Friday (y). Data on these two variables for the 38 shoppers are listed in the accompanying table.

  1. Fit the quadratic model, E(y)=β0+β1x+β2x2, to the data using statistical software. Give the prediction equation.
  2. Conduct a test of the overall adequacy of the model. Use α=0.01.
  3. Conduct a test to determine if the relationship between age (x) and number of years shopping on Black Friday (y) is best represented by a linear or quadratic function. Use α=0.01.
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free