Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Cooling method for gas turbines. Refer to the Journal of Engineering for Gas Turbines and Power (January 2005) study of a high-pressure inlet fogging method for a gas turbine engine, Exercise 12.19 (p. 726). Consider a model for heat rate (kilojoules per kilowatt per hour) of a gas turbine as a function of cycle speed (revolutions per minute) and cycle pressure ratio. The data are saved in the file.

a. Write a complete second-order model for heat rate (y).

b. Give the null and alternative hypotheses for determining whether the curvature terms in the complete second-order model are statistically useful for predicting heat rate (y).

c. For the test in part b, identify the complete and reduced model.

d. The complete and reduced models were fit and compared using SPSS. A summary of the results are shown in the accompanying SPSS printout. Locate the value of the test statistic on the printout.

e. Find the rejection region for α = .10 and locate the p-value of the test on the printout.

f. State the conclusion in the words of the problem.


Short Answer

Expert verified

Answer

a. A second-order model equation in 2 independent variables can be written asy=β0+β1x1+β2x2+β3x21+β4x22.

b. The null and alternate hypothesis to test whether the complete model contributes more information for the prediction of y than the reduced model can be written as H0: β3 = β4 = 0 while Ha: At least one of β parameters are nonzero.

c. The complete and reduced model for determining whether the curvature terms can be written as y=β0+β1x1+β2x2+β3x21+β4x22and y=β0+β1x1+β2x2respectively.

d. For complete and reduced models, the value of the test statistic are 118.303 and 9.353 from the SPSS printout.

e. For α = 0.10, the rejection region is defined as p-value > α. The p-value of the test is 0.000 and 0.000.

f. For α = 0.10, the hypothesis testing will conclude if the models: complete and reduced are significant and explained by the variables.

Step by step solution

01

Second-order model equation

A second-order model equation in 2 independent variables can be written

as y=β0+β1x1+β2x2+β3x21+β4x22.

02

 Step 2: Hypotheses

The null and alternate hypothesis to test whether the complete model contributes more information for the prediction of y than the reduced model can be written as

H0: β3 = β4 = 0while Ha: At least one of β parameters are nonzero.

03

Complete and reduced model

The complete and reduced model for determining whether the curvature terms can be written as y=β0+β1x1+β2x2+β3x21+β4x22andy=β0+β1x1+β2x2 respectively.

04

Value of the test statistic

For complete and reduced models, the value of the test statistic is 118.303 and 9.353 from the SPSS printout.

05

Rejection region and p-value

For α = 0.10, the rejection region is defined as p-value > α. The p-value of the test is 0.000 and 0.000.

06

Conclusion

For α = 0.10, the hypothesis testing will conclude if the models: complete and reduced are significant and explained by the variables.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Determine which pairs of the following models are “nested” models. For each pair of nested models, identify the complete and reduced model.

a.E(y)=β0+β1x1+β2x2b.E(y)=β0+β1x1c.E(y)=β0+β1x1+β2x12d.E(y)=β0+β1x1+β2x2+β3x1x2e.E(y)=β0+β1x1+β2x2+β3x1x2+β4x21+β5x22


Commercial refrigeration systems. The role of maintenance in energy saving in commercial refrigeration was the topic of an article in the Journal of Quality in Maintenance Engineering (Vol. 18, 2012). The authors provided the following illustration of data relating the efficiency (relative performance) of a refrigeration system to the fraction of total charges for cooling the system required for optimal performance. Based on the data shown in the graph (next page), hypothesize an appropriate model for relative performance (y) as a function of fraction of charge (x). What is the hypothesized sign (positive or negative) of the β2parameter in the model?

Question: Adverse effects of hot-water runoff. The Environmental Protection Agency (EPA) wants to determine whether the hot-water runoff from a particular power plant located near a large gulf is having an adverse effect on the marine life in the area. The goal is to acquire a prediction equation for the number of marine animals located at certain designated areas, or stations, in the gulf. Based on past experience, the EPA considered the following environmental factors as predictors for the number of animals at a particular station:

X1 = Temperature of water (TEMP)

X2 = Salinity of water (SAL)

X3 = Dissolved oxygen content of water (DO)

X4 = Turbidity index, a measure of the turbidity of the water (TI)

x5 = Depth of the water at the station (ST_DEPTH)

x6 = Total weight of sea grasses in sampled area (TGRSWT)

As a preliminary step in the construction of this model, the EPA used a stepwise regression procedure to identify the most important of these six variables. A total of 716 samples were taken at different stations in the gulf, producing the SPSS printout shown below. (The response measured was y, the logarithm of the number of marine animals found in the sampled area.)

a. According to the SPSS printout, which of the six independent variables should be used in the model? (Use α = .10.)

b. Are we able to assume that the EPA has identified all the important independent variables for the prediction of y? Why?

c. Using the variables identified in part a, write the first-order model with interaction that may be used to predict y.

d. How would the EPA determine whether the model specified in part c is better than the first-order model?

e.Note the small value of R2. What action might the EPA take to improve the model?

Question: Consider the model:

y=β0+β1x1+β2x2+β3x3+ε

where x1 is a quantitative variable and x2 and x3 are dummy variables describing a qualitative variable at three levels using the coding scheme

role="math" localid="1649846492724" x2=1iflevel20otherwisex3=1iflevel30otherwise

The resulting least squares prediction equation is y^=44.8+2.2x1+9.4x2+15.6x3

a. What is the response line (equation) for E(y) when x2 = x3 = 0? When x2 = 1 and x3 = 0? When x2 = 0 and x3 = 1?

b. What is the least squares prediction equation associated with level 1? Level 2? Level 3? Plot these on the same graph.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free