Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To model the relationship between y, a dependent variable, and x, an independent variable, a researcher has taken one measurement on y at each of three different x-values. Drawing on his mathematical expertise, the researcher realizes that he can fit the second-order model Ey=β0+β1x+β2x2and it will pass exactly through all three points, yielding SSE = 0. The researcher, delighted with the excellent fit of the model, eagerly sets out to use it to make inferences. What problems will he encounter in attempting to make inferences?

Short Answer

Expert verified

The researcher has fit a second-order model to the data and taken one measurement on y at 3 different values for x. The SSE value is coming out to be zero indicating that the data points lie perfectly on the line. However, since the SSE value is zero, the researcher might face issues while testing the significance of beta parameters or the goodness of fit test for the model.

Step by step solution

01

Second-order model

The researcher has fit a second-order model to the data and taken one measurement on y at 3 different values for x. The SSE value is coming out to be zero indicating that the data points lie perfectly on the line.

02

Problems with second-order model

However, since the SSE value is zero, the researcher might face issues while testing the significance of beta parameters or the goodness of fit test for the model.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Failure times of silicon wafer microchips. Refer to the National Semiconductor study of manufactured silicon wafer integrated circuit chips, Exercise 12.63 (p. 749). Recall that the failure times of the microchips (in hours) was determined at different solder temperatures (degrees Celsius). The data are repeated in the table below.

  1. Fit the straight-line modelEy=β0+β1xto the data, where y = failure time and x = solder temperature.

  2. Compute the residual for a microchip manufactured at a temperature of 149°C.

  3. Plot the residuals against solder temperature (x). Do you detect a trend?

  4. In Exercise 12.63c, you determined that failure time (y) and solder temperature (x) were curvilinearly related. Does the residual plot, part c, support this conclusion?

It is desired to relate E(y) to a quantitative variable x1and a qualitative variable at three levels.

  1. Write a first-order model.

  2. Write a model that will graph as three different second- order curves—one for each level of the qualitative variable.


Factors that impact an auditor’s judgment. A study was conducted to determine the effects of linguistic delivery style and client credibility on auditors’ judgments (Advances in Accounting and Behavioural Research, 2004). Two hundred auditors from Big 5 accounting firms were each asked to perform an analytical review of a fictitious client’s financial statement. The researchers gave the auditors different information on the client’s credibility and linguistic delivery style of the client’s explanation. Each auditor then provided an assessment of the likelihood that the client-provided explanation accounted for the fluctuation in the financial statement. The three variables of interest—credibility (x1), linguistic delivery style (x2) , and likelihood (y) —were all measured on a numerical scale. Regression analysis was used to fit the interaction model,y=β0+β1x1+β2x2+β3x1x2+ε . The results are summarized in the table at the bottom of page.

a) Interpret the phrase client credibility and linguistic delivery style interact in the words of the problem.

b) Give the null and alternative hypotheses for testing the overall adequacy of the model.

c) Conduct the test, part b, using the information in the table.

d) Give the null and alternative hypotheses for testing whether client credibility and linguistic delivery style interact.

e) Conduct the test, part d, using the information in the table.

f) The researchers estimated the slope of the likelihood–linguistic delivery style line at a low level of client credibility 1x1 = 222. Obtain this estimate and interpret it in the words of the problem.

g) The researchers also estimated the slope of the likelihood–linguistic delivery style line at a high level of client credibility 1x1 = 462. Obtain this estimate and interpret it in the words of the problem.

When a multiple regression model is used for estimating the mean of the dependent variable and for predicting a new value of y, which will be narrower—the confidence interval for the mean or the prediction interval for the new y-value? Why?

Write a model relating E(y) to one qualitative independent variable that is at four levels. Define all the terms in your model.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free