Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose you have developed a regression model to explain the relationship between y and x1, x2, and x3. The ranges of the variables you observed were as follows: 10 ≤ y ≤ 100, 5 ≤ x1 ≤ 55, 0.5 ≤ x2 ≤ 1, and 1,000 ≤ x3 ≤ 2,000. Will the error of prediction be smaller when you use the least squares equation to predict y when x1 = 30, x2 = 0.6, and x3 = 1,300, or when x1 = 60, x2 = 0.4, and x3 = 900? Why?

Short Answer

Expert verified

Therefore, when predicting y values, the error of prediction will be smaller when x1= 30, x2 = 0.6, and x3 = 1300 since the values of independent variables are well within the range described in the question.

Step by step solution

01

Range of independent variables

The range of x1, x2, and x3 is given as 5 ≤ x1 ≤ 55, 0.5 ≤ x2 ≤ 1, and 1,000 ≤ x3 ≤ 2,000. When x1= 30, x2 = 0.6, and x3 = 1300, all the variables x1,x2 and x3are well within the range of values. While when x1 = 60, x2 = 0.4, and x3 = 900, x1and x2 are out of the range and x3 is within the range.

02

Conclusion

Therefore, when predicting y values, the error of prediction will be smaller when x1= 30, x2 = 0.6, and x3 = 1300.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Tipping behaviour in restaurants. Can food servers increase their tips by complimenting the customers they are waiting on? To answer this question, researchers collected data on the customer tipping behaviour for a sample of 348 dining parties and reported their findings in the Journal of Applied Social Psychology (Vol. 40, 2010). Tip size (y, measured as a percentage of the total food bill) was modelled as a function of size of the dining party(x1)and whether or not the server complimented the customers’ choice of menu items (x2). One theory states that the effect of the size of the dining party on tip size is independent of whether or not the server compliments the customers’ menu choices. A second theory hypothesizes that the effect of size of the dining party on tip size is greater when the server compliments the customers’ menu choices as opposed to when the server refrains from complimenting menu choices.

a. Write a model for E(y) as a function of x1 and x2 that corresponds to Theory 1.

b. Write a model for E(y) as a function of x1and x2that corresponds to Theory 2.

c. The researchers summarized the results of their analysis with the following graph. Based on the graph, which of the two models would you expect to fit the data better? Explain.

Question: Suppose you fit the interaction model y=β0+β1x1+β2x2+β3x1x2+ε to n = 32 data points and obtain the following results:SSyy=479,SSE=21,β^3=10, and sβ^3=4

a. Find R2and interpret its value.

b. Is the model adequate for predicting y? Test at α=.05

c. Use a graph to explain the contribution of the x1 , x2 term to the model.

d. Is there evidence that x1and x2 interact? Test at α=.05 .

Question:If the analysis of variance F-test leads to the conclusion that at least one of the model parameters is nonzero, can you conclude that the model is the best predictor for the dependent variable ? Can you conclude that all of the terms in the model are important for predicting ? What is the appropriate conclusion?

Commercial refrigeration systems. The role of maintenance in energy saving in commercial refrigeration was the topic of an article in the Journal of Quality in Maintenance Engineering (Vol. 18, 2012). The authors provided the following illustration of data relating the efficiency (relative performance) of a refrigeration system to the fraction of total charges for cooling the system required for optimal performance. Based on the data shown in the graph (next page), hypothesize an appropriate model for relative performance (y) as a function of fraction of charge (x). What is the hypothesized sign (positive or negative) of the β2parameter in the model?

Question: There are six independent variables, x1, x2, x3, x4, x5, and x6, that might be useful in predicting a response y. A total of n = 50 observations is available, and it is decided to employ stepwise regression to help in selecting the independent variables that appear to be useful. The software fits all possible one-variable models of the form

E(Y)=β0+β1xi

where xi is the ith independent variable, i = 1, 2, …, 6. The information in the table is provided from the computer printout.

a. Which independent variable is declared the best one variable predictor of y? Explain.

b. Would this variable be included in the model at this stage? Explain.

c. Describe the next phase that a stepwise procedure would execute.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free