Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Independent random samples n1 =233 and n2=312 are selected from two populations and used to test the hypothesis Ha:(μ1-μ)2=0against the alternative Ha:(μ1-μ)20

.a. The two-tailed p-value of the test is 0.1150 . Interpret this result.b. If the alternative hypothesis had been Ha:(μ1-μ)2<0 , how would the p-value change? Interpret the p-value for this one-tailed test.

Short Answer

Expert verified

Answer

Random sampling guarantees that the findings received from your sample are close to those received if the full sample was surveyed.

Step by step solution

01

(a) Interpret the result for the given two-tailed p-value of the test

The null hypothesis is Ha:μ1-μ2=0

If we take the significance level to be 0.05 and the p-value is 0.1150.

As the p-value is more than the significance level, so the null hypothesis will not be rejected.

If we take the significance level to be 0.01 , and the p-value is 0.1150 .

As the p-value is more than the significance level, so the null hypothesis will not be rejected.

02

(b) Interpret the p-valueHa:(μ1-μ)2<0  .

If the alternative hypothesis has changed from Ha:μ1-μ20toHa:μ1-μ2<0 , it implies that the p-value should be halved as now it is a one-tailed test instead of a two-tailed test.

So, the p-value will be 0.0575 .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: A company sent its employees to attend two different English courses. The company is interested in knowing if there is any difference between the two courses attended by its employees. When the employees returned from the courses, the company asked them to take a common test. The summary statistics of the test results of each of the two English courses are recorded in the following table:

a. Identify the parameter(s) that would help the company determine the difference between the two courses.

b. State the appropriate null and alternative hypotheses that the company would like to test.

c. After conducting the hypothesis test at thesignificance level, the company found the p-value. Interpret this result for the company.

Buy-side vs. sell-side analysts' earnings forecasts. Refer to the Financial Analysts Journal (Jul. /Aug. 2008) study of financial analysts' forecast earnings, Exercise 2.86 (p. 112). Recall that data were collected from 3,526 buy-side analysts and 58,562forecasts made by sell-side analysts, and the relative absolute forecast error was determined for each. The mean and standard deviation of forecast errors for both types of analysts are given in the table.

a. Construct a 95% confidence interval for the difference between the mean forecast error of buy-side analysts and the mean forecast error of sell-side analysts.

b. Based on the interval, part a, which type of analysis has the greater mean forecast error? Explain.

c. What assumptions about the underlying populations of forecast errors (if any) are necessary for the validity of the inference, part b?

A paired difference experiment yielded ndpairs of observations. In each case, what is the rejection region for testing H0d>2?

a. nd=12,α=.05

b.nd=24,α=.10

c.nd=4,α=.025

d.nd=80,α=.01

Question: Summer weight-loss camp. Camp Jump Start is an 8-week summer camp for overweight and obese adolescents. Counselors develop a weight-management program for each camper that centers on nutrition education and physical activity. To justify the cost of the camp, counselors must provide empirical evidence that the weight-management program is effective. In a study published in Paediatrics (April 2010), the body mass index (BMI) was measured for each of 76 campers both at the start and end of camp. Summary statistics on BMI measurements are shown in the table.

Source: Based on J. Huelsing, N. Kanafani, J. Mao, and N. H. White, "Camp Jump Start: Effects of a Residential Summer Weight-Loss Camp for Older Children and Adolescents," Pediatrics, Vol. 125, No. 4, April 2010 (Table 3).

a. Give the null and alternative hypotheses for determining whether the mean BMI at the end of camp is less than the mean BMI at the start of camp.

b. How should the data be analyzed, as an independent samples test or as a paired difference test? Explain.

c. Calculate the test statistic using the formula for an independent samples test. (Note: This is not how the test should be conducted.)

d. Calculate the test statistic using the formula for a paired difference test.

e. Compare the test statistics, parts c and d. Which test statistic provides more evidence in support of the alternative hypothesis?

f. The p-value of the test, part d, was reported as p 6 .0001. Interpret this result, assuming a = .01.

g. Do the differences in BMI values need to be normally distributed in order for the inference, part f, to be valid? Explain.

h. Find a 99% confidence interval for the true mean change in BMI for Camp Jump Start campers. Interpret the result.

Salmonella in yield. Salmonella infection is the most common bacterial foodborne illness in the United States. How current is Salmonella in yield grown in the major agricultural region of Monterey, California? Experimenters from the U.S. Department of Agriculture (USDA) conducted tests for Salmonella in yield grown in the region and published their results in Applied and Environmental Microbiology (April 2011). In a sample of 252 societies attained from water used to wash the region, 18 tested positive for Salmonella. In an independent sample of 476 societies attained from the region's wildlife (e.g., catcalls), 20 tested positive for Salmonella. Is this sufficient substantiation for the USDA to state that the frequency of Salmonella in the region's water differs from the frequency of Salmonella in the region's wildlife? Use a = .01 to make your decision

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free