Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Independent random samples n1 =233 and n2=312 are selected from two populations and used to test the hypothesis Ha:(μ1-μ)2=0against the alternative Ha:(μ1-μ)20

.a. The two-tailed p-value of the test is 0.1150 . Interpret this result.b. If the alternative hypothesis had been Ha:(μ1-μ)2<0 , how would the p-value change? Interpret the p-value for this one-tailed test.

Short Answer

Expert verified

Answer

Random sampling guarantees that the findings received from your sample are close to those received if the full sample was surveyed.

Step by step solution

01

(a) Interpret the result for the given two-tailed p-value of the test

The null hypothesis is Ha:μ1-μ2=0

If we take the significance level to be 0.05 and the p-value is 0.1150.

As the p-value is more than the significance level, so the null hypothesis will not be rejected.

If we take the significance level to be 0.01 , and the p-value is 0.1150 .

As the p-value is more than the significance level, so the null hypothesis will not be rejected.

02

(b) Interpret the p-valueHa:(μ1-μ)2<0  .

If the alternative hypothesis has changed from Ha:μ1-μ20toHa:μ1-μ2<0 , it implies that the p-value should be halved as now it is a one-tailed test instead of a two-tailed test.

So, the p-value will be 0.0575 .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A random sample of n = 6 observations from a normal distribution resulted in the data shown in the table. Compute a 95% confidence interval for σ2

Salmonella in yield. Salmonella infection is the most common bacterial foodborne illness in the United States. How current is Salmonella in yield grown in the major agricultural region of Monterey, California? Experimenters from the U.S. Department of Agriculture (USDA) conducted tests for Salmonella in yield grown in the region and published their results in Applied and Environmental Microbiology (April 2011). In a sample of 252 societies attained from water used to wash the region, 18 tested positive for Salmonella. In an independent sample of 476 societies attained from the region's wildlife (e.g., catcalls), 20 tested positive for Salmonella. Is this sufficient substantiation for the USDA to state that the frequency of Salmonella in the region's water differs from the frequency of Salmonella in the region's wildlife? Use a = .01 to make your decision

The data for a random sample of 10 paired observations is shown below.

PairSample from Population 1

(Observation 1)

Sample from Population 2 (Observation 2)
12345678910
19253152493459471751
24273653553466512055

a. If you wish to test whether these data are sufficient to indicate that the mean for population 2 is larger than that for population 1, what are the appropriate null and alternative hypotheses? Define any symbols you use.

b. Conduct the test, part a, usingα=.10.

c. Find a 90%confidence interval for μd. Interpret this result.

d. What assumptions are necessary to ensure the validity of this analysis?

A paired difference experiment yielded ndpairs of observations. In each case, what is the rejection region for testing H0d>2?

a. nd=12,α=.05

b.nd=24,α=.10

c.nd=4,α=.025

d.nd=80,α=.01

Let t0 be a particular value of t. Use Table III in Appendix D to find t0 values such that the following statements are true.

a.=P(-t0<t<t0).95wheredf=10b.P(t-t0ortt0)wheredf=10c.P(tt0)=.05wheredf=10d.P(t-t0ortt0)=.10wheredf=20e.P(t-t0ortt0)=.01wheredf=5

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free