Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider two events A and B, with PA=.1,PB=.2,andPAB=0

a.Are A and B mutually exclusive?

b.Are A and B independent?

Short Answer

Expert verified
  1. The events are mutually exclusive.
  2. The events are not independent.

Step by step solution

01

Mutually exclusive

The events are said to be mutually excusive that event that cannot occurs at the same time and having probability is zero.

The events are said independent if their probability does not affect each another. P(AB)=P(A)·P(B).

02

Find A and B mutually exclusive

Yes, event A and B are mutually exclusive because P(AB)=0.

Hence, the events are mutually exclusive.

03

Showing A and B are not independent

b.

No, A, and B are not separate events.

Here,

P(A)·P(B)=0.1×0.2=0.020

That is,P(A)·P(B)PAB

Therefore, the events are not independent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A paired difference experiment yielded ndpairs of observations. In each case, what is the rejection region for testing H0d>2?

a. nd=12,α=.05

b.nd=24,α=.10

c.nd=4,α=.025

d.nd=80,α=.01

Assume that x is a binomial random variable with n = 1000 andp = 0.50. Use a normal approximation to find each of the following probabilities:

a. P(x>500)

b.P(490x<500)

c.P(x>550)

Two populations are described in each of the following cases. In which cases would it be appropriate to apply the small-sample t-test to investigate the difference between the population means?

a.Population 1: Normal distribution with variance σ12. Population 2: Skewed to the right with varianceσ22=σ12.

b. Population 1: Normal distribution with variance σ12. Population 2: Normal distribution with variance σ22σ12.

c. Population 1: Skewed to the left with variance σ12. Population 2: Skewed to the left with varianceσ22=σ12.

d. Population 1: Normal distribution with varianceσ12 . Population 2: Normal distribution with varianceσ22=σ12 .

e. Population 1: Uniform distribution with varianceσ12 . Population 2: Uniform distribution with variance σ22=σ12.

Tomato as a taste modifier. Miraculin—a protein naturally produced in a rare tropical fruit—has the potential to be an alternative low-calorie sweetener. In Plant Science (May2010), a group of Japanese environmental scientists investigated the ability of a hybrid tomato plant to produce miraculin. For a particular generation of the tomato plant, the amount x of miraculin produced (measured in micrograms per gram of fresh weight) had a mean of 105.3 and a standard deviation of 8.0. Assume that x is normally distributed.

a. FindP(x>120).

b. FindP(100<x<110).

c. Find the value a for whichP(x<a)=0.25.

Question: A company sent its employees to attend two different English courses. The company is interested in knowing if there is any difference between the two courses attended by its employees. When the employees returned from the courses, the company asked them to take a common test. The summary statistics of the test results of each of the two English courses are recorded in the following table:

a. Identify the parameter(s) that would help the company determine the difference between the two courses.

b. State the appropriate null and alternative hypotheses that the company would like to test.

c. After conducting the hypothesis test at thesignificance level, the company found the p-value. Interpret this result for the company.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free