Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Oil content of fried sweet potato chips. Refer to theJournal of Food Engineering (September 2013) study of the characteristics of fried sweet potato chips, Exercise 7.90 (p. 431). Recall that a sample of 6 sweet potato slices fried at 130° using a vacuum fryer yielded the following statistics on internal oil content (measured in gigagrams [Gg]): x1 = .178 Gg and s1 = .011 Gg. A second sample of 6 sweet potato slices was obtained, but these were subjected to a two-stage frying process (again, at 130°) in an attempt to
improve texture and appearance. Summary statistics on internal oil content for this second sample follows: x2 = .140 Gg and s2 = .002 Gg. Using a t-test, the researchers want to compare the mean internal oil content of sweet potato chips fried with the two methods. Do you recommend the researchers carry out this analysis? Explain.

Short Answer

Expert verified

The answer can be reduced from the following steps.

Step by step solution

01

Given information

n1=6n2=6x¯1=.178Ggx¯2=.140GgS1=.011GgS2=.002Gg

02

Explaining the t-test

T-test: The t-test is a study that provides empirical used to assess the relationship between two groups' means and assess whether there is a significant difference between them.

When data sets have unknown variances and a normal distribution, such as the data set obtained from tossing a coin 100 times, t-tests are used.

03

Application of t-test

Due to the two sample sizes, two variances, and two standard deviations, the T-test is the most recommended. Therefore, this test evaluates the outcomes of two groups. Other tests, however, only evaluate one group.

The t-test is as follows.

t=DifferencebetweenmeanVarianceSamplesize

t=x¯1-x¯2S21n1+S2n2

t=0.0380.0001216+0.0000046

t=0.0380.001216+0.0000046t=0.0380.00726+0.000002436

t=0.0380.00728436t=0.0380.00020233t=0.0380.0142242t=2.67150349

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Deferred tax allowance study. A study was conducted to identify accounting choice variables that influence a manager’s decision to change the level of the deferred tax asset allowance at the firm (The Engineering Economist, January/February 2004). Data were collected for a sample of 329 firms that reported deferred tax assets in 2000. The dependent variable of interest (DTVA) is measured as the change in the deferred tax asset valuation allowance divided by the deferred tax asset. The independent variables used as predictors of DTVA are listed as follows:

LEVERAGE: x1= ratio of debt book value to shareholder’s equity

BONUS: x2 = 1 if firm maintains a management bonus plan,

0 if not

MVALUE: x3 = market value of common stock

BBATH: x4 = 1 if operating earnings negative and lower than last year,

0 if not

EARN: x5 = change in operating earnings divided by total assets

A first-order model was fit to the data with the following results (p-values in parentheses):

Ra2 = .280

y^=0.044+0.006x1-0.035x2-0.001x3+0.296x4+0.010x5

(.070) (.228) (.157) (.678) (.001) (.869)

  1. Interpret the estimate of the β coefficient for x4.
  2. The “Big Bath” theory proposed by the researchers’ states that the mean DTVA for firms with negative earnings and earnings lower than last year will exceed the mean DTVA of other firms. Is there evidence to support this theory? Test using α = .05.
  3. Interpret the value of Ra2.

The “last name” effect in purchasing. The Journal of Consumer Research (August 2011) published a study demonstrating the “last name” effect—i.e., the tendency for consumers with last names that begin with a later letter of the alphabet to purchase an item before consumers with last names that begin with earlier letters. To facilitate the analysis, the researchers assigned a number, x, to each consumer based on the first letter of the consumer’s last name. For example, last names beginning with “A” were assigned x = 1; last names beginning with “B” were assigned x = 2; and last names beginning with “Z” were assigned x = 26.

a. If the first letters of consumers’ last names are equally likely, find the probability distribution for x.

b. Find E (x) using the probability distribution, part a. If possible, give a practical interpretation of this value.?

c. Do you believe the probability distribution, part a, is realistic? Explain. How might you go about estimating the true probability distribution for x

Question: Independent random samples n1 =233 and n2=312 are selected from two populations and used to test the hypothesis Ha:(μ1-μ)2=0against the alternative Ha:(μ1-μ)20

.a. The two-tailed p-value of the test is 0.1150 . Interpret this result.b. If the alternative hypothesis had been Ha:(μ1-μ)2<0 , how would the p-value change? Interpret the p-value for this one-tailed test.

Question: Promotion of supermarket vegetables. A supermarket chain is interested in exploring the relationship between the sales of its store-brand canned vegetables (y), the amount spent on promotion of the vegetables in local newspapers(x1) , and the amount of shelf space allocated to the brand (x2 ) . One of the chain’s supermarkets was randomly selected, and over a 20-week period, x1 and x2 were varied, as reported in the table.

Week

Sales, y

Advertising expenses,

Shelf space,

Interaction term,

1

2010

201

75

15075

2

1850

205

50

10250

3

2400

355

75

26625

4

1575

208

30

6240

5

3550

590

75

44250

6

2015

397

50

19850

7

3908

820

75

61500

8

1870

400

30

12000

9

4877

997

75

74775

10

2190

515

30

15450

11

5005

996

75

74700

12

2500

625

50

31250

13

3005

860

50

43000

14

3480

1012

50

50600

15

5500

1135

75

85125

16

1995

635

30

19050

17

2390

837

30

25110

18

4390

1200

50

60000

19

2785

990

30

29700

20

2989

1205

30

36150

  1. Fit the following model to the data:yβ0+β1x1+β2x2+β3x1x2+ε
  2. Conduct an F-test to investigate the overall usefulness of this model. Useα=.05 .
  3. Test for the presence of interaction between advertising expenditures and shelf space. Useα=.05 .
  4. Explain what it means to say that advertising expenditures and shelf space interact.
  5. Explain how you could be misled by using a first-order model instead of an interaction model to explain how advertising expenditures and shelf space influence sales.
  6. Based on the type of data collected, comment on the assumption of independent errors.

Question: Independent random samples selected from two normal populations produced the sample means and standard deviations shown below.

Sample 1

Sample 2

n1= 17x¯1= 5.4s1= 3.4

role="math" localid="1660287338175" n2= 12x¯2=7.9s2=4.8

a. Conduct the testH0:(μ1-μ2)>10against Ha:(μ1-μ2)10. Interpret the results.

b. Estimateμ1-μ2 using a 95% confidence interval

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free