Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Oil content of fried sweet potato chips. Refer to theJournal of Food Engineering (September 2013) study of the characteristics of fried sweet potato chips, Exercise 7.90 (p. 431). Recall that a sample of 6 sweet potato slices fried at 130° using a vacuum fryer yielded the following statistics on internal oil content (measured in gigagrams [Gg]): x1 = .178 Gg and s1 = .011 Gg. A second sample of 6 sweet potato slices was obtained, but these were subjected to a two-stage frying process (again, at 130°) in an attempt to
improve texture and appearance. Summary statistics on internal oil content for this second sample follows: x2 = .140 Gg and s2 = .002 Gg. Using a t-test, the researchers want to compare the mean internal oil content of sweet potato chips fried with the two methods. Do you recommend the researchers carry out this analysis? Explain.

Short Answer

Expert verified

The answer can be reduced from the following steps.

Step by step solution

01

Given information

n1=6n2=6x¯1=.178Ggx¯2=.140GgS1=.011GgS2=.002Gg

02

Explaining the t-test

T-test: The t-test is a study that provides empirical used to assess the relationship between two groups' means and assess whether there is a significant difference between them.

When data sets have unknown variances and a normal distribution, such as the data set obtained from tossing a coin 100 times, t-tests are used.

03

Application of t-test

Due to the two sample sizes, two variances, and two standard deviations, the T-test is the most recommended. Therefore, this test evaluates the outcomes of two groups. Other tests, however, only evaluate one group.

The t-test is as follows.

t=DifferencebetweenmeanVarianceSamplesize

t=x¯1-x¯2S21n1+S2n2

t=0.0380.0001216+0.0000046

t=0.0380.001216+0.0000046t=0.0380.00726+0.000002436

t=0.0380.00728436t=0.0380.00020233t=0.0380.0142242t=2.67150349

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Independent random samples n1 =233 and n2=312 are selected from two populations and used to test the hypothesis Ha:(μ1-μ)2=0against the alternative Ha:(μ1-μ)20

.a. The two-tailed p-value of the test is 0.1150 . Interpret this result.b. If the alternative hypothesis had been Ha:(μ1-μ)2<0 , how would the p-value change? Interpret the p-value for this one-tailed test.

Non-destructive evaluation. Non-destructive evaluation(NDE) describes methods that quantitatively characterize materials, tissues, and structures by non-invasive means, such as X-ray computed tomography, ultrasonic, and acoustic emission. Recently, NDE was used to detect defects in steel castings (JOM,May 2005). Assume that the probability that NDE detects a “hit” (i.e., predicts a defect in a steel casting) when, in fact, a defect exists is .97. (This is often called the probability of detection.) Also assume that the probability that NDE detects a hit when, in fact, no defect exists is .005. (This is called the probability of a false call.) Past experience has shown a defect occurs once in every 100 steel castings. If NDE detects a hit for a particular steel casting, what is the probability that an actual defect exists?

Question: Independent random samples from approximately normal populations produced the results shown below.

Sample 1

Sample 2

52 33 42 4441 50 44 5145 38 37 4044 50 43

52 43 47 5662 53 61 5056 52 53 6050 48 60 55

a. Do the data provide sufficient evidence to conclude that (μ1-μ2)>10? Test usingα=0.1.

b. Construct a confidence interval for (μ1-μ2). Interpret your result.

Studies have established that rudeness in the workplace can lead to retaliatory and counterproductive behaviour. However, there has been little research on how rude behaviours influence a victim’s task performance. Such a study was conducted, and the results were published in the Academy of Management Journal (Oct. 2007). College students enrolled in a management course were randomly assigned to two experimental conditions: rudeness condition (students) and control group (students). Each student was asked to write down as many uses for a brick as possible in minutes. For those students in the rudeness condition, the facilitator displayed rudeness by generally berating students for being irresponsible and unprofessional (due to a late-arriving confederate). No comments were made about the late-arriving confederate to students in the control group. The number of different uses for brick was recorded for each student and is shown below. Conduct a statistical analysis (at α=0.01) to determine if the true mean performance level for students in the rudeness condition is lower than the actual mean performance level for students in the control group.

The data is given below

Control Group:

124516217201920191023160491317130212117311119912185213015421211101311361013161228191230


Rudeness Condition:

411181196511912757311191110789107114135478381591610071513921310

Last name and acquisition timing. Refer to the Journal of Consumer Research (August 2011) study of the last name effect in acquisition timing, Exercise 8.13 (p. 466). Recall that the mean response times (in minutes) to acquire free tickets were compared for two groups of MBA students— those students with last names beginning with one of the first nine letters of the alphabet and those with last names beginning with one of the last nine letters of the alphabet. How many MBA students from each group would need to be selected to estimate the difference in mean times to within 2 minutes of its true value with 95% confidence? (Assume equal sample sizes were selected for each group and that the response time standard deviation for both groups is σ≈ 9 minutes.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free