Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Identify the rejection region for each of the following cases. Assume

v1=7andv2=9

a. Ha1222,α=.05

b. Ha1222,α=.01

c. Ha12σ22,α=.1withs12>s22

d. Ha1222,α=.025

Short Answer

Expert verified

A hypothesis is a tested assertion concerning the relation among two or more factors or a suggested reason for an observable phenomenon.

Step by step solution

01

Step-by-Step Solution Step 1: (a) Find the rejected region

The numerator degrees of freedom is v1=7

The denominator degrees of freedom is v2=9

The alternative hypothesis is Ha:σ12<σ22

The level of significance isα=0.05

As the alternative hypothesis is given to us, so we will set up a null hypothesis, that isH0:σ12=σ22

Using percentage points of the F-distributionα=0.05, the critical value is3.293

Therefore, the rejection region is F>3.293.

02

(b) Find the rejected region

The numerator degrees of freedom isv1=7

The denominator degrees of freedom isv2=9

The alternative hypothesis isHa:σ12>σ22

The level of significance isα=0.01

As the alternative hypothesis is given to us, so we will set up a null hypothesis, that is H0:σ12=σ22

Using percentage points of the F-distributionα=0.01 , the critical value is5.613

Therefore, the rejection region is F>5.613.

03

(c) Find the rejected region

The numerator degrees of freedom isv1=7

The denominator degrees of freedom isv2=9

The alternative hypothesis isHa:σ12σ22

The level of significance isα=0.1

As the alternative hypothesis is given to us, so we will set up a null hypothesis, that isH0:σ12=σ22

Using percentage points of the F-distributionα=0.1 , the critical value is2.505

Therefore, the rejection region is F>2.505.

04

(d) Find the rejected region 

The numerator degrees of freedom isv1=7

The denominator degrees of freedom isv2=9

The alternative hypothesis isHa:σ12<σ22

The level of significance isα=0.025

As the alternative hypothesis is given to us, so we will set up a null hypothesis, that isH0:σ12=σ22

Using percentage points of the F-distributionα=0.025, the critical value islocalid="1652720854474" 4.197

Therefore, the rejection region isF>4.197.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the numerical value of

a.6! b.(109)c. (101)d.(63)e.0!

Solar energy generation along highways. Refer to the International Journal of Energy and Environmental Engineering (December 2013) study of solar energy generation along highways, Exercise 8.39 (p. 481). Recall that the researchers compared the mean monthly amount of solar energy generated by east-west– and north-south– oriented solar panels using a matched-pairs experiment. However, a small sample of only five months was used for the analysis. How many more months would need to be selected to estimate the difference in means to within 25 kilowatt-hours with a 90% confidence interval? Use the information provided in the SOLAR file to find an estimate of the standard error required to carry out the calculation

Optimal goal target in soccer. When attempting to score a goal in soccer, where should you aim your shot? Should you aim for a goalpost (as some soccer coaches teach), the middle of the goal, or some other target? To answer these questions, Chance (Fall 2009) utilized the normal probability distribution. Suppose the accuracy x of a professional soccer player’s shots follows a normal distribution with a mean of 0 feet and a standard deviation of 3 feet. (For example, if the player hits his target,x=0; if he misses his target 2 feet to the right, x=2; and if he misses 1 foot to the left,x=-1.) Now, a regulation soccer goal is 24 feet wide. Assume that a goalkeeper will stop (save) all shots within 9 feet of where he is standing; all other shots on goal will score. Consider a goalkeeper who stands in the middle of the goal.

a. If the player aims for the right goalpost, what is the probability that he will score?

b. If the player aims for the center of the goal, what is the probability that he will score?

c. If the player aims for halfway between the right goal post and the outer limit of the goalkeeper’s reach, what is the probability that he will score?

Assume that x is a binomial random variable with n = 1000 andp = 0.50. Use a normal approximation to find each of the following probabilities:

a. P(x>500)

b.P(490x<500)

c.P(x>550)

The data for a random sample of 10 paired observations is shown below.

PairSample from Population 1

(Observation 1)

Sample from Population 2 (Observation 2)
12345678910
19253152493459471751
24273653553466512055

a. If you wish to test whether these data are sufficient to indicate that the mean for population 2 is larger than that for population 1, what are the appropriate null and alternative hypotheses? Define any symbols you use.

b. Conduct the test, part a, usingα=.10.

c. Find a 90%confidence interval for μd. Interpret this result.

d. What assumptions are necessary to ensure the validity of this analysis?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free