Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Given \({v_1}\,and\,{v_2}\) find the following probabilities:

  1. \({v_1} = 2,\,{v_2} = 30,\,p\left( {F \ge 5.39} \right)\)

Short Answer

Expert verified
  1. The probability is 0.01.

Step by step solution

01

Given Information

Degrees of freedom are

\(\begin{aligned}{v_1} = {n_1} - 1 = 2\\{v_2} = {n_2} - 1 = 30\end{aligned}\)

02

F-Distribution

F-distribution used for equality of two population variances. We want to find whether the two independent estimates of the population variances are homogeneous or not.

03

Compute probability

\(\begin{aligned}{l}p\left( {F \ge 5.39} \right)\\ &= 1 - p\left( {F < 5.39} \right)\\ &= 1 - 0.990\\ &= 0.01\end{aligned}\)

Therefore, the probability is 0.01.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Product failure behavior. An article in Hotwire (December 2002) discussed the length of time till the failure of a product produced at Hewlett Packard. At the end of the product’s lifetime, the time till failure is modeled using an exponential distribution with a mean of 500 thousand hours. In reliability jargon, this is known as the “wear-out” distribution for the product. During its normal (useful) life, assume the product’s time till failure is uniformly distributed over the range of 100 thousand to 1 million hours.

a. At the end of the product’s lifetime, find the probability that the product fails before 700 thousand hours.

b. During its normal (useful) life, find the probability that the product fails before 700 thousand hours.

c. Show that the probability of the product failing before 830 thousand hours is approximately the same for both the normal (useful) life distribution and the wear-out distribution.

Drug content assessment. Refer to Exercise 8.16 (p. 467)and the Analytical Chemistry (Dec. 15, 2009) study in which scientists used high-performance liquid chromatography to determine the amount of drug in a tablet. Recall that 25 tablets were produced at each of two different, independent sites. The researchers want to determine if the two sites produced drug concentrations with different variances. A Minitab printout of the analysis follows. Locate the test statistic and p-value on the printout. Use these values α=.05and to conduct the appropriate test for the researchers.

Test and CI for two Variances: Content vs Site

Method

Null hypothesis α1α2=1

Alternative hypothesis α1α21

F method was used. This method is accurate for normal data only.

Statistics

Site N St Dev Variance 95% CI for St Devs

1 25 3.067 9.406 (2.195,4.267)

2 25 3.339 11.147 (2.607,4.645)

Ratio of standard deviation =0.191

Ratio of variances=0.844

95% Confidence Intervals

Method CI for St Dev Ratio CI Variance Ratio

F (0.610, 1.384) (0.372, 1.915)

Tests

Method DF1 DF2 Test statistic p-value

F 24 24 0.84 0.681

Corporate sustainability of CPA firms. Refer to the Business and Society (March 2011) study on the sustainability behaviors of CPA corporations, Exercise 2.23 (p. 83). Recall that the level of support for corporate sustainability (measured on a quantitative scale ranging from 0 to 160 points) was obtained for each of 992 senior managers at CPA firms. The accompanying Minitab printout gives the mean and standard deviation for the level of support variable. It can be shown that level of support is approximately normally distributed.

a. Find the probability that the level of support for corporate sustainability of a randomly selected senior manager is less than 40 points.

b. Find the probability that the level of support for corporate sustainability of a randomly selected senior manager is between 40 and 120 points.

c. Find the probability that the level of support for corporate sustainability of a randomly selected senior manager is greater than 120 points.

d. One-fourth of the 992 senior managers indicated a level of support for corporate sustainability below what value?

Descriptive Statistics: Support

Variables

N

Mean

StDev

Variance

Minimum

Maximum

Range

Support

992

67.755

26.871

722.036

0.000

155.000

155.000

The “last name” effect in purchasing. The Journal of Consumer Research (August 2011) published a study demonstrating the “last name” effect—i.e., the tendency for consumers with last names that begin with a later letter of the alphabet to purchase an item before consumers with last names that begin with earlier letters. To facilitate the analysis, the researchers assigned a number, x, to each consumer based on the first letter of the consumer’s last name. For example, last names beginning with “A” were assigned x = 1; last names beginning with “B” were assigned x = 2; and last names beginning with “Z” were assigned x = 26.

a. If the first letters of consumers’ last names are equally likely, find the probability distribution for x.

b. Find E (x) using the probability distribution, part a. If possible, give a practical interpretation of this value.?

c. Do you believe the probability distribution, part a, is realistic? Explain. How might you go about estimating the true probability distribution for x

A paired difference experiment yielded ndpairs of observations. In each case, what is the rejection region for testing H0d>2?

a. nd=12,α=.05

b.nd=24,α=.10

c.nd=4,α=.025

d.nd=80,α=.01

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free