Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Solar energy generation along highways. Refer to the International Journal of Energy and Environmental Engineering (December 2013) study of solar energy generation along highways, Exercise 8.39 (p. 481). Recall that the researchers compared the mean monthly amount of solar energy generated by east-west– and north-south– oriented solar panels using a matched-pairs experiment. However, a small sample of only five months was used for the analysis. How many more months would need to be selected to estimate the difference in means to within 25 kilowatt-hours with a 90% confidence interval? Use the information provided in the SOLAR file to find an estimate of the standard error required to carry out the calculation

Short Answer

Expert verified

28 months would need to estimate the difference in means to within 25 kilowatt hours.

Step by step solution

01

Given Information

With a 90% confidence interval, the researchers compared the mean monthly amount of solar energy.

The standard error is 86.4.

The sampling error is 25.

02

Z-value

A minimum of two steps are required.

For α=0.1

The z-value is given by

zα2=z0.05=1.645

03

Compute the sample

For, z=1.645,andSE=86.4

The sample is calculated as

nd=zα2σdSE2=1.645×86.4252=142.128252=5.6852=32.319=33

A small sample of only 5 months used for analysis.

Therefore,

33-5=28

Therefore, 28 months would need to estimate the difference in means to within 25 kilowatt hours.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Independent random samples from approximately normal populations produced the results shown below.

Sample 1

Sample 2

52 33 42 4441 50 44 5145 38 37 4044 50 43

52 43 47 5662 53 61 5056 52 53 6050 48 60 55

a. Do the data provide sufficient evidence to conclude that (μ1-μ2)>10? Test usingα=0.1.

b. Construct a confidence interval for (μ1-μ2). Interpret your result.

Question: Promotion of supermarket vegetables. A supermarket chain is interested in exploring the relationship between the sales of its store-brand canned vegetables (y), the amount spent on promotion of the vegetables in local newspapers(x1) , and the amount of shelf space allocated to the brand (x2 ) . One of the chain’s supermarkets was randomly selected, and over a 20-week period, x1 and x2 were varied, as reported in the table.

Week

Sales, y

Advertising expenses,

Shelf space,

Interaction term,

1

2010

201

75

15075

2

1850

205

50

10250

3

2400

355

75

26625

4

1575

208

30

6240

5

3550

590

75

44250

6

2015

397

50

19850

7

3908

820

75

61500

8

1870

400

30

12000

9

4877

997

75

74775

10

2190

515

30

15450

11

5005

996

75

74700

12

2500

625

50

31250

13

3005

860

50

43000

14

3480

1012

50

50600

15

5500

1135

75

85125

16

1995

635

30

19050

17

2390

837

30

25110

18

4390

1200

50

60000

19

2785

990

30

29700

20

2989

1205

30

36150

  1. Fit the following model to the data:yβ0+β1x1+β2x2+β3x1x2+ε
  2. Conduct an F-test to investigate the overall usefulness of this model. Useα=.05 .
  3. Test for the presence of interaction between advertising expenditures and shelf space. Useα=.05 .
  4. Explain what it means to say that advertising expenditures and shelf space interact.
  5. Explain how you could be misled by using a first-order model instead of an interaction model to explain how advertising expenditures and shelf space influence sales.
  6. Based on the type of data collected, comment on the assumption of independent errors.

Find the following probabilities for the standard normal random variable z:

a.P(0<z<2.25)b.P(-2.25<z<0)b.P(-2.25<z<1.25)d.P(-2.50<z<1.50)e.P(z<-2.33orz>2.33)

Question: Refer to the Bulletin of Marine Science (April 2010) study of lobster trap placement, Exercise 6.29 (p. 348). Recall that the variable of interest was the average distance separating traps—called trap-spacing—deployed by teams of fishermen. The trap-spacing measurements (in meters) for a sample of seven teams from the Bahia Tortugas (BT) fishing cooperative are repeated in the table. In addition, trap-spacing measurements for eight teams from the Punta Abreojos (PA) fishing cooperative are listed. For this problem, we are interested in comparing the mean trap-spacing measurements of the two fishing cooperatives.

BT Cooperative

93

99

105

94

82

70

86

PA Cooperative

118

94

106

72

90

66

98


Source: Based on G. G. Chester, “Explaining Catch Variation Among Baja California Lobster Fishers Through Spatial Analysis of Trap-Placement Decisions,” Bulletin of Marine Science, Vol. 86, No. 2, April 2010 (Table 1).

a. Identify the target parameter for this study.b. Compute a point estimate of the target parameter.c. What is the problem with using the normal (z) statistic to find a confidence interval for the target parameter?d. Find aconfidence interval for the target parameter.e. Use the interval, part d, to make a statement about the difference in mean trap-spacing measurements of the two fishing cooperatives.f. What conditions must be satisfied for the inference, part e, to be valid?

Question:Quality control. Refer to Exercise 5.68. The mean diameter of the bearings produced by the machine is supposed to be .5 inch. The company decides to use the sample mean from Exercise 5.68 to decide whether the process is in control (i.e., whether it is producing bearings with a mean diameter of .5 inch). The machine will be considered out of control if the mean of the sample of n = 25 diameters is less than .4994 inch or larger than .5006 inch. If the true mean diameter of the bearings produced by the machine is .501 inch, what is the approximate probability that the test will imply that the process is out of control?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free