Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Conducting a political poll. A pollster wants to estimate the difference between the proportions of men and women who favor a particular national candidate using a 90% confidence interval of width .04. Suppose the pollster has no prior information about the proportions. If equal numbers of men and women are to be polled, how large should the sample sizes be?

Short Answer

Expert verified

The required sample size is 3383.

Step by step solution

01

Given Information

With a 95% confidence interval, a pollster intends to calculate the actual difference between the proportion of men and women.

From the given information

2SE=0.04SE=0.02
02

Z-value

For α=0.1

The z-value is given by

zα2=z0.05=1.645

03

Compute the sample

For, z=1.645,p1=p2=0.5andSE=0.02

The sample is calculated as

n1=n2=z0.052×p11-p1+p21-p2SE2=1.6452×0.25+0.250.022=2.706025×.50.0004=1.35301250.0004=3382.533383

Therefore, the required sample size is 3383.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Business sign conservation. The Federal Highway Administration (FHWA) lately issued new guidelines for maintaining and replacing business signs. Civil masterminds at North Carolina State University studied the effectiveness of colorful sign conservation practices developed to cleave to the new guidelines and published the results in the Journal of Transportation Engineering (June 2013). One portion of the study concentrated on the proportion of business signs that fail the minimal FHWA retro-reflectivity conditions. Of signs maintained by the. North Carolina Department of Transportation (NCDOT), .512 were supposed failures. Of signs maintained by. County- possessed roads in North Carolina, 328 were supposed. Failures. Conduct a test of the thesis to determine whether the true proportions of business signs that fail the minimal FHWA retro-reflectivity conditions differ depending on whether the signs are maintained by the NCDOT or by the county. Test using α = .05

Shopping vehicle and judgment. Refer to the Journal ofMarketing Research (December 2011) study of shopping cart design, Exercise 2.85 (p. 112). Recall that design engineers want to know whether the mean choice of the vice-over-virtue score is higher when a consumer’s arm is flexed (as when carrying a shopping basket) than when the consumer’s arm is extended (as when pushing a shopping cart). The average choice score for the n1 = 11 consumers with a flexed arm was x¯1= 59, while the average for the n2 = 11
Consumers with an extended arm was x¯2= 43. In which scenario is the assumption required for a t-test to compare means more likely to be violated, S1= 4 and S2= 2, or, S1= 10 and S2 = 15? Explain.

A paired difference experiment yielded ndpairs of observations. In each case, what is the rejection region for testing H0d>2?

a. nd=12,α=.05

b.nd=24,α=.10

c.nd=4,α=.025

d.nd=80,α=.01

Consider the discrete probability distribution shown here.

x

10

12

18

20

p

.2

.3

.1

.4

a. Calculateμ,σ2 andσ .

b. What isP(x<15) ?

c. Calculate μ±2σ .

d. What is the probability that xis in the interval μ±2σ ?

Non-destructive evaluation. Non-destructive evaluation(NDE) describes methods that quantitatively characterize materials, tissues, and structures by non-invasive means, such as X-ray computed tomography, ultrasonic, and acoustic emission. Recently, NDE was used to detect defects in steel castings (JOM,May 2005). Assume that the probability that NDE detects a “hit” (i.e., predicts a defect in a steel casting) when, in fact, a defect exists is .97. (This is often called the probability of detection.) Also assume that the probability that NDE detects a hit when, in fact, no defect exists is .005. (This is called the probability of a false call.) Past experience has shown a defect occurs once in every 100 steel castings. If NDE detects a hit for a particular steel casting, what is the probability that an actual defect exists?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free