Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Enough money has been budgeted to collect independent random samples of size n1=n2=100from populations 1 and 2 to estimate localid="1664867109106" μ1-μ2. Prior information indicates that σ1=σ2=10. Have sufficient funds been allocated to construct a 90% confidence interval forμ1-μ2of width 5 or less? Justify your answer.

Short Answer

Expert verified

The required sample size is 22. Since, the sample size for each population is large enough.

Step by step solution

01

Given Information

The sample size of two populations are given below

n1=n2=100

The standard deviation of two populations are given below

σ1=σ2=10

The sampling error is

SE=5

02

Z-value

For α=0.1

The z-value is given by

zα2=z0.05=1.645

03

Compute the sample

For, z=1.645,σ1=σ2=10andSE=5

The sample is calculated as

n1=n2=z0.052×σ12+σ22SE2=1.6452×102+10252=2.7060×20025=541.225=21.64822

Therefore, the required sample size is 22.

Since, the sample size for each population is large enough.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Independent random samples from normal populations produced the results shown in the next table.

Sample 1


Sample 2

1.23.11.72.83.0

4.22.73.63.9

a. Calculate the pooled estimate of σ2.

b. Do the data provide sufficient evidence to indicate that μ21? Test using α=.10.

c. Find a 90% confidence interval for (μ1μ2).

d. Which of the two inferential procedures, the test of hypothesis in part b or the confidence interval in part c, provides more information about (μ1μ2)?

Homework assistance for accounting students. Refer to the Journal of Accounting Education (Vol. 25, 2007) study of providing homework assistance to accounting students, Exercise 8.18 (p. 468). Recall that one group of students was given a completed homework solution and another group was given only check figures at various steps of the solution. The researchers wanted to compare the average test score improvement of the two groups. How many students should be sampled in each group to estimate the difference in the averages to within .5 point with 99% confidence? Assume that the standard deviations of the test score improvements for the two groups are approximately equal to 1

A paired difference experiment yielded ndpairs of observations. In each case, what is the rejection region for testing H0d>2?

a. nd=12,α=.05

b.nd=24,α=.10

c.nd=4,α=.025

d.nd=80,α=.01

A random sample of size n = 121 yielded p^ = .88.

a. Is the sample size large enough to use the methods of this section to construct a confidence interval for p? Explain.

b. Construct a 90% confidence interval for p.

c. What assumption is necessary to ensure the validity of this confidence interval?

Intrusion detection systems. The Journal of Researchof the National Institute of Standards and Technology (November–December 2003) published a study of a doubleintrusion detection system with independent systems. Ifthere is an intruder, system A sounds an alarm with probability.9, and system B sounds an alarm with probability.95. If there is no intruder, system A sounds an alarm withprobability .2, and system B sounds an alarm with probability.1. Now assume that the probability of an intruderis .4. Also assume that under a given condition (intruderor not), systems A and B operate independently. If bothsystems sound an alarm, what is the probability that anintruder is detected?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free