Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two populations are described in each of the following cases. In which cases would it be appropriate to apply the small-sample t-test to investigate the difference between the population means?

a.Population 1: Normal distribution with variance σ12. Population 2: Skewed to the right with varianceσ22=σ12.

b. Population 1: Normal distribution with variance σ12. Population 2: Normal distribution with variance σ22σ12.

c. Population 1: Skewed to the left with variance σ12. Population 2: Skewed to the left with varianceσ22=σ12.

d. Population 1: Normal distribution with varianceσ12 . Population 2: Normal distribution with varianceσ22=σ12 .

e. Population 1: Uniform distribution with varianceσ12 . Population 2: Uniform distribution with variance σ22=σ12.

Short Answer

Expert verified

A t-test is an inference statistic that is used to see if there is a substantial difference in the means of two categories that are connected in some way.

Step by step solution

01

Step-by-Step Solution Step 1: Definition of t-test.

The t-teststatistical examination was used to contrast the two groups' means. It assists us in determining whether or not there is a substantial disparity between the means of the two groups. When doing a t-test, basic assumptions include the measurement scale, accidental selection, normality of distribution of data, the sufficiency of sample size, as well as equality of variation in standard deviation.

The formula of the t-test is:

t=x¯μσn

02

(a) State whether the t-test is appropriate when Population 1: Normal distribution with variance σ12 . Population 2: Skewed to the right with variance σ22=σ12 .

Population 2 is not normally distributed, so it will not be appropriate to apply the small-Sample t-test to investigate the difference between the population means.

03

(b) State whether the t-test is appropriate when Population 1: Normal distribution with variance σ12 . Population 2: Normal distribution with variance σ22≠σ12 .

The variances of Population1 and Population 2 are unequal, so it will not be appropriate to apply the small-Sample t-test to investigate the difference between the population means.

04

(c) State whether the t-test is appropriate when Population 1: Skewed to left with variance σ12 . Population 2: Skewed to left with variance σ22=σ12 .

The Populations are not normally distributed, so it will not be appropriate to apply the small-Sample t-test to investigate the difference between the population means.

05

(d) State whether the t-test is appropriate when Population 1: Normal distribution with variance σ12. Population 2: Normal distribution with variance σ22=σ12.

The Populations are normally distributed and the variances are also equal, so it will be appropriate to apply the small-Sample t-test to investigate the difference between the population means.

06

(e) State whether the t-test is appropriate when Population 1: Uniform distribution with variance σ12. Population 2: Uniform distribution with variance σ22=σ12.

The Populations are not normally distributed, so it will not be appropriate to apply the small-Sample t-test to investigate the difference between the population means.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Service without a smile. “Service with a smile” is a slogan that many businesses adhere to. However, some jobs (e.g., judges, law enforcement officers, and pollsters) require neutrality when dealing with the public. An organization will typically provide “display rules” to guide employees on what emotions they should use when interacting with the public. A Journal of Applied Psychology (Vol. 96, 2011) study compared the results of surveys conducted using two different types of display rules: positive (requiring a strong display of positive emotions) and neutral (maintaining neutral emotions at all times). In this designed experiment, 145undergraduate students were randomly assigned to either a positive display rule condition(n1=78)or a neutral display rule condition(n2=67). Each participant was trained to conduct the survey using the display rules. As a manipulation check, the researchers asked each participant to rate, on a scale of 1= “strongly agree” to5= “strongly disagree,” the statement, “This task requires me to be neutral in my expressions.”

a. If the manipulation of the participants was successful, which group should have the larger mean response? Explain.

b. The data for the study (simulated based on information provided in the journal article) are listed in the table above. Access the data and run an analysis to determine if the manipulation was successful. Conduct a test of hypothesis usingα=0.05 .

c. What assumptions, if any, are required for the inference from the test to be valid?

The data is given below

Positive Display Rule:

243333444444444444454444444444444445555555555555555555555555555555555555555555


Neutral Display Rule:

3321211122122232212222212222221222222232122212122322222222222122222


Let t0 be a particular value of t. Use Table III in Appendix D to find t0 values such that the following statements are true.

a.=P(-t0<t<t0).95wheredf=10b.P(t-t0ortt0)wheredf=10c.P(tt0)=.05wheredf=10d.P(t-t0ortt0)=.10wheredf=20e.P(t-t0ortt0)=.01wheredf=5

Ages of self-employed immigrants. Is self-employment for immigrant workers a faster route to economic advancement in the country? This was one of the questions studied in research published in the International Journal of Manpower (Vol. 32, 2011). One aspect of the study involved comparing the ages of self-employed and wage-earning immigrants. The researcher found that in Sweden, native wage earners tend to be younger than self-employed natives. However, immigrant wage earners tend to be older than self-employed immigrants. This inference was based on the table's summary statistics for male Swedish immigrants.

Self-employed immigrants

Wage-earning immigrants

Sample Size

870

84,875

Mean

44.88

46.79

Source: Based on L. Andersson, "Occupational Choice and Returns to Self-Employment Among Immigrants," International Journal of Manpower, Vol. 32, No. 8, 2011 (Table I).

a. Based on the information given, why is it impossible to provide a measure of reliability for the inference "Self-employed immigrants are younger, on average, than wage-earning immigrants in Sweden"?

b. What information do you need to measure reliability for the inference, part a?

c. Give a value of the test statistic that would conclude that the true mean age of self-employed immigrants is less than the true mean age of wage-earning immigrants if you are willing to risk a Type I error rate of .01.

d. Assume that s, the standard deviation of the ages is the same for both self-employed and wage-earning immigrants. Give an estimate of s that would lead you to conclude that the true mean age of self-employed immigrants is less than the true mean age of wage-earning immigrants using α=0.01 .

e. Is the true value of s likely to be larger or smaller than the one you calculated in part d?

Independent random samples from two populations with standard deviations σ1=2andσ2=8, respectively, are selected. The sample sizes and the sample means are recorded in the following table:

Sample 1

Sample 2

n1=58x¯1=17.5

n2=62x¯2=16.23

a. Calculate the standard error of the sampling distribution for Sample 1.

b. Calculate the standard error of the sampling distribution for Sample 2.

c. Suppose you were to calculate the difference between the sample means (x1x2). Find the mean and standard error of the sampling distribution (x1x2).

d. Will the statistic (x1x2) be normally distributed?

Product failure behavior. An article in Hotwire (December 2002) discussed the length of time till the failure of a product produced at Hewlett Packard. At the end of the product’s lifetime, the time till failure is modeled using an exponential distribution with a mean of 500 thousand hours. In reliability jargon, this is known as the “wear-out” distribution for the product. During its normal (useful) life, assume the product’s time till failure is uniformly distributed over the range of 100 thousand to 1 million hours.

a. At the end of the product’s lifetime, find the probability that the product fails before 700 thousand hours.

b. During its normal (useful) life, find the probability that the product fails before 700 thousand hours.

c. Show that the probability of the product failing before 830 thousand hours is approximately the same for both the normal (useful) life distribution and the wear-out distribution.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free