Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For each of the following values of αfind the values of z for which H0:p1-p2=0would be rejected in favor of Ha:p1-p2<0.

aα=.01bα=.025cα=.05dα=.10

Short Answer

Expert verified

a. For α=.01,the value of Zis -2.326.

b. For α=.025,the value of Zis -1.96.

c. For α=.05 ,the value of Zis -1.645.

d. For α=.10,the value of Z is -1.28.

Step by step solution

01

Given information

We have to find critical values for the hypotheses

H0:p1-p2=0

And

Ha:p1-p2<0

02

Definition of Critical value

The critical value is the cut-off value for the test statistic, which decides whether to reject the null hypothesis or not.

03

Calculating Critical value

Here

α:The level of significance

α=.01

Since we have a left-tailed test (as an alternative hypothesis is left-tailed)

Using the standard normal table, the critical value at the 1% significance level for the left-tailed test is -2.326

That is

z=-2.326.

The null hypothesis will be rejected for any test statistic value less than -2.326.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Two independent random samples have been selected—100 observations from population 1 and 100 from population 2. Sample means x¯1=26.6,x¯2= 15.5 were obtained. From previous experience with these populations, it is known that the variances areσ12=9andσ22=16 .

a. Find σ(x¯1-x¯2).

b. Sketch the approximate sampling distribution for (x¯1-x¯2), assuming (μ1-μ2)=10.

c. Locate the observed value of (x¯1-x¯2)the graph you drew in part

b. Does it appear that this value contradicts the null hypothesis H0:(μ1-μ2)=10?

d. Use the z-table to determine the rejection region for the test againstH0:(μ1-μ2)10. Useα=0.5.

e. Conduct the hypothesis test of part d and interpret your result.

f. Construct a confidence interval for μ1-μ2. Interpret the interval.

g. Which inference provides more information about the value of μ1-μ2— the test of hypothesis in part e or the confidence interval in part f?

Find the numerical value of

a.6! b.(109)c. (101)d.(63)e.0!

A paired difference experiment yielded ndpairs of observations. In each case, what is the rejection region for testing H0d>2?

a. nd=12,α=.05

b.nd=24,α=.10

c.nd=4,α=.025

d.nd=80,α=.01

Optimal goal target in soccer. When attempting to score a goal in soccer, where should you aim your shot? Should you aim for a goalpost (as some soccer coaches teach), the middle of the goal, or some other target? To answer these questions, Chance (Fall 2009) utilized the normal probability distribution. Suppose the accuracy x of a professional soccer player’s shots follows a normal distribution with a mean of 0 feet and a standard deviation of 3 feet. (For example, if the player hits his target,x=0; if he misses his target 2 feet to the right, x=2; and if he misses 1 foot to the left,x=-1.) Now, a regulation soccer goal is 24 feet wide. Assume that a goalkeeper will stop (save) all shots within 9 feet of where he is standing; all other shots on goal will score. Consider a goalkeeper who stands in the middle of the goal.

a. If the player aims for the right goalpost, what is the probability that he will score?

b. If the player aims for the center of the goal, what is the probability that he will score?

c. If the player aims for halfway between the right goal post and the outer limit of the goalkeeper’s reach, what is the probability that he will score?

A paired difference experiment produced the following results:

nd=38,x¯1=92,x¯2=95.5,d¯=-3.5,sd2=21

a. Determine the values zfor which the null hypothesis μ1μ2=0would be rejected in favor of the alternative hypothesis μ1μ2<0 Use .role="math" localid="1652704322912" α=.10

b. Conduct the paired difference test described in part a. Draw the appropriate conclusions.

c. What assumptions are necessary so that the paired difference test will be valid?

d. Find a90% confidence interval for the mean difference μd.

e. Which of the two inferential procedures, the confidence interval of part d or the test of the hypothesis of part b, provides more information about the differences between the population means?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free