Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Acidity of mouthwash. Acid is a primary cause of dental caries (cavities). It is theorized that oral mouthwashes contribute to caries development due to the antiseptic agent oxidizing into acid over time. This theory was tested in the Journal of Dentistry, Oral Medicine, and Dental Education (Vol. 3, 2009). Three bottles of mouthwash, each of a different brand, were randomly selected from a drugstore. Each bottle's pH level (where lower pH levels indicate higher acidity) was measured on the date of purchase and after 30 days. The data are shown in the table on the next page. Conduct an analysis to determine if mouthwash's mean initial pH level differs significantly from the mean pH level after 30 days. Use a = .05 as your level of significance.

Source: Based on K. L. Chunhye and B. C. Schmitz, "Determination of pH, Total Acid, and Total Ethanol in Oral Health Products: Oxidation of Ethanol and Recommendations to Mitigate Its Association with Dental Caries," Journal of Dentistry, Oral Medicine and Dental Education, Vol. 3, No. 1, 2009 (Table 1)

Short Answer

Expert verified

a0.1106bt=2.92

Step by step solution

01

Given data

d=x-4

To test the hypothesis:

H0:μd=0v/sH1:μd>0

To find the value, " prepare the table as follows:

d¯=Edn=0.563=0.1867where n = 3

Sd=d¯i-d¯2=0.02452=0.1106

02

Test statistics

t=d¯Sd/nt=0.18670.1106/3t=2.9229

Critical value: 5% Significance level tn-1,λt3-1,0.05=2.92

H0reject at a 5% significance level.

There is enough data to establish that the average acidity level in mouthwash rose throughout 30 days.

The fundamental premise is that PH levels should be regularly distributed, and observations should be presented as matched pairs.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a random sample of 250 people from a city, 148 of them favor apples over other fruits.

a. Use a 90% confidence interval to estimate the true proportion p of people in the population who favor apples over other fruits.

b. How large a sample would be needed to estimate p to be within .15 with 90% confidence?

Question: Forecasting daily admission of a water park. To determine whether extra personnel are needed for the day, the owners of a water adventure park would like to find a model that would allow them to predict the day’s attendance each morning before opening based on the day of the week and weather conditions. The model is of the form

where,

y = Daily admission

x1 = 1 if weekend

0 otherwise

X2 = 1 if sunny

0 if overcast

X3 = predicted daily high temperature (°F)

These data were recorded for a random sample of 30 days, and a regression model was fitted to the data.

The least squares analysis produced the following results:

with

  1. Interpret the estimated model coefficients.
  2. Is there sufficient evidence to conclude that this model is useful for predicting daily attendance? Use α = .05.
  3. Is there sufficient evidence to conclude that the mean attendance increases on weekends? Use α = .10.
  4. Use the model to predict the attendance on a sunny weekday with a predicted high temperature of 95°F.
  5. Suppose the 90% prediction interval for part d is (645, 1,245). Interpret this interval.

4.111 Personnel dexterity tests. Personnel tests are designed to test a job applicant’s cognitive and/or physical abilities. The Wonderlic IQ test is an example of the former; the Purdue Pegboard speed test involving the arrangement of pegs on a peg board is an example of the latter. A particular

dexterity test is administered nationwide by a private testing service. It is known that for all tests administered last year, the distribution of scores was approximately normal with mean 75 and standard deviation 7.5.

a. A particular employer requires job candidates to score at least 80 on the dexterity test. Approximately what percentage of the test scores during the past year exceeded 80?

b. The testing service reported to a particular employer that one of its job candidate’s scores fell at the 98th percentile of the distribution (i.e., approximately 98% of the scores were lower than the candidate’s, and only 2%were higher). What was the candidate’s score?

The data for a random sample of 10 paired observations is shown below.

PairSample from Population 1

(Observation 1)

Sample from Population 2 (Observation 2)
12345678910
19253152493459471751
24273653553466512055

a. If you wish to test whether these data are sufficient to indicate that the mean for population 2 is larger than that for population 1, what are the appropriate null and alternative hypotheses? Define any symbols you use.

b. Conduct the test, part a, usingα=.10.

c. Find a 90%confidence interval for μd. Interpret this result.

d. What assumptions are necessary to ensure the validity of this analysis?

Question: Refer to the Bulletin of Marine Science (April 2010) study of lobster trap placement, Exercise 6.29 (p. 348). Recall that the variable of interest was the average distance separating traps—called trap-spacing—deployed by teams of fishermen. The trap-spacing measurements (in meters) for a sample of seven teams from the Bahia Tortugas (BT) fishing cooperative are repeated in the table. In addition, trap-spacing measurements for eight teams from the Punta Abreojos (PA) fishing cooperative are listed. For this problem, we are interested in comparing the mean trap-spacing measurements of the two fishing cooperatives.

BT Cooperative

93

99

105

94

82

70

86

PA Cooperative

118

94

106

72

90

66

98


Source: Based on G. G. Chester, “Explaining Catch Variation Among Baja California Lobster Fishers Through Spatial Analysis of Trap-Placement Decisions,” Bulletin of Marine Science, Vol. 86, No. 2, April 2010 (Table 1).

a. Identify the target parameter for this study.b. Compute a point estimate of the target parameter.c. What is the problem with using the normal (z) statistic to find a confidence interval for the target parameter?d. Find aconfidence interval for the target parameter.e. Use the interval, part d, to make a statement about the difference in mean trap-spacing measurements of the two fishing cooperatives.f. What conditions must be satisfied for the inference, part e, to be valid?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free