Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Acidity of mouthwash. Acid is a primary cause of dental caries (cavities). It is theorized that oral mouthwashes contribute to caries development due to the antiseptic agent oxidizing into acid over time. This theory was tested in the Journal of Dentistry, Oral Medicine, and Dental Education (Vol. 3, 2009). Three bottles of mouthwash, each of a different brand, were randomly selected from a drugstore. Each bottle's pH level (where lower pH levels indicate higher acidity) was measured on the date of purchase and after 30 days. The data are shown in the table on the next page. Conduct an analysis to determine if mouthwash's mean initial pH level differs significantly from the mean pH level after 30 days. Use a = .05 as your level of significance.

Source: Based on K. L. Chunhye and B. C. Schmitz, "Determination of pH, Total Acid, and Total Ethanol in Oral Health Products: Oxidation of Ethanol and Recommendations to Mitigate Its Association with Dental Caries," Journal of Dentistry, Oral Medicine and Dental Education, Vol. 3, No. 1, 2009 (Table 1)

Short Answer

Expert verified

a0.1106bt=2.92

Step by step solution

01

Given data

d=x-4

To test the hypothesis:

H0:μd=0v/sH1:μd>0

To find the value, " prepare the table as follows:

d¯=Edn=0.563=0.1867where n = 3

Sd=d¯i-d¯2=0.02452=0.1106

02

Test statistics

t=d¯Sd/nt=0.18670.1106/3t=2.9229

Critical value: 5% Significance level tn-1,λt3-1,0.05=2.92

H0reject at a 5% significance level.

There is enough data to establish that the average acidity level in mouthwash rose throughout 30 days.

The fundamental premise is that PH levels should be regularly distributed, and observations should be presented as matched pairs.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The “last name” effect in purchasing. The Journal of Consumer Research (August 2011) published a study demonstrating the “last name” effect—i.e., the tendency for consumers with last names that begin with a later letter of the alphabet to purchase an item before consumers with last names that begin with earlier letters. To facilitate the analysis, the researchers assigned a number, x, to each consumer based on the first letter of the consumer’s last name. For example, last names beginning with “A” were assigned x = 1; last names beginning with “B” were assigned x = 2; and last names beginning with “Z” were assigned x = 26.

a. If the first letters of consumers’ last names are equally likely, find the probability distribution for x.

b. Find E (x) using the probability distribution, part a. If possible, give a practical interpretation of this value.?

c. Do you believe the probability distribution, part a, is realistic? Explain. How might you go about estimating the true probability distribution for x

Product failure behavior. An article in Hotwire (December 2002) discussed the length of time till the failure of a product produced at Hewlett Packard. At the end of the product’s lifetime, the time till failure is modeled using an exponential distribution with a mean of 500 thousand hours. In reliability jargon, this is known as the “wear-out” distribution for the product. During its normal (useful) life, assume the product’s time till failure is uniformly distributed over the range of 100 thousand to 1 million hours.

a. At the end of the product’s lifetime, find the probability that the product fails before 700 thousand hours.

b. During its normal (useful) life, find the probability that the product fails before 700 thousand hours.

c. Show that the probability of the product failing before 830 thousand hours is approximately the same for both the normal (useful) life distribution and the wear-out distribution.

Identify the rejection region for each of the following cases. Assume

v1=7andv2=9

a. Ha1222,α=.05

b. Ha1222,α=.01

c. Ha12σ22,α=.1withs12>s22

d. Ha1222,α=.025

The gender diversity of a large corporation’s board of directors was studied in Accounting & Finance (December 2015). In particular, the researchers wanted to know whether firms with a nominating committee would appoint more female directors than firms without a nominating committee. One of the key variables measured at each corporation was the percentage of female board directors. In a sample of 491firms with a nominating committee, the mean percentage was 7.5%; in an independent sample of 501firms without a nominating committee, the mean percentage was role="math" localid="1652702402701" 4.3% .

a. To answer the research question, the researchers compared the mean percentage of female board directors at firms with a nominating committee with the corresponding percentage at firms without a nominating committee using an independent samples test. Set up the null and alternative hypotheses for this test.

b. The test statistic was reported as z=5.1 with a corresponding p-value of 0.0001. Interpret this result if α=0.05.

c. Do the population percentages for each type of firm need to be normally distributed for the inference, part b, to be valid? Why or why not?

d. To assess the practical significance of the test, part b, construct a 95% confidence interval for the difference between the true mean percentages at firms with and without a nominating committee. Interpret the result.

Sanitarium administration of malaria cases. One of the most sedate health challenges in India is malaria. Accordingly, the Indian sanitarium director's must-have—the coffers to treat the high volume of admitted malaria cases. A study published in the National Journal of Community Medicine (Vol. 1, 2010) delved into whether the malaria admission rate is more advanced in months than in others. In a sample of 192 sanitarium cases admitted in January, 32 were treated for malaria.

In an independent sample of 403 cases admitted in May (4 months latterly), 34 were treated for malaria.

a. Describe the two populations of stake in this study.

b. Give a point estimate of the contrast in the malaria admission rates in January and May.

c. Find a 90% confidence interval for the contrast in the malaria admission rates in January and May.

d. Based on the interval, part c, can you conclude that contrast exists in the authentic malaria admission rates in January and May? Simplify.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free