Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A paired difference experiment produced the following results:

nd=38,x¯1=92,x¯2=95.5,d¯=-3.5,sd2=21

a. Determine the values zfor which the null hypothesis μ1μ2=0would be rejected in favor of the alternative hypothesis μ1μ2<0 Use .role="math" localid="1652704322912" α=.10

b. Conduct the paired difference test described in part a. Draw the appropriate conclusions.

c. What assumptions are necessary so that the paired difference test will be valid?

d. Find a90% confidence interval for the mean difference μd.

e. Which of the two inferential procedures, the confidence interval of part d or the test of the hypothesis of part b, provides more information about the differences between the population means?

Short Answer

Expert verified

A confidence interval is the set of numbers seen in our sample for which we anticipate discovering the number that best represents the populace.

Step by step solution

01

Step-by-Step Solution Step 1: (a) Determine the value of z for which the null hypothesis will be rejected

Null Hypothesis:H0:μ1μ2=0

Alternate Hypothesis:Ha:μ1μ2<0

The critical value for a left-tailed testα=0.1 is-1.28 .

If zdata<1.28then, reject the null hypothesis.

02

(b) Conduct the test

z=d¯0sd2nd=3.502138=3.50.7434=4.71

Therefore, the value of paired difference test is -4.71.

The null hypothesis will be rejected, and it can be concluded that Ha:μ1μ2<0.

03

(c) State the assumptions

  1. By Central Limit Theorem, the sampling distributiond¯ follows a normal distribution.
  2. The sample differences are randomly selected from the population differences.
  3. The sample size of the no. of pairs is large, which is more than 30.
04

(d) Find the confidence interval

Confidence interval =90%

Level of Significance (α)=0.10

Confidence Interval =d¯±zα/2sd2nd

=3.5±z0.052138=3.5±1.645(0.7434)=3.5±1.223=(4.723,2.277)

Therefore,90%the confidence interval for the mean difference μdis (4.723,2.277).

05

(e) State the conclusion

The confidence intervals tell us about the difference between population means of an interval for all possible values. So, it gives more information than the z-test.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Shared leadership in airplane crews. Refer to the Human Factors (March 2014) study of shared leadership by the cockpit and cabin crews of a commercial airplane, Exercise 8.14 (p. 466). Recall that each crew was rated as working either successfully or unsuccessfully as a team. Then, during a simulated flight, the number of leadership functions exhibited per minute was determined for each individual crew member. One objective was to compare the mean leadership scores for successful and unsuccessful teams. How many crew members would need to be sampled from successful and unsuccessful teams to estimate the difference in means to within .05 with 99% confidence? Assume you will sample twice as many members from successful teams as from unsuccessful teams. Also, assume that the variance of the leadership scores for both groups is approximately .04.

Question: Impact of race on football card values. Refer to the Electronic Journal of Sociology (2007) study of the Impact of race on the value of professional football players’ “rookie” cards, Exercise 12.72 (p. 756). Recall that the sample consisted of 148 rookie cards of NFL players who were inducted into the Football Hall of Fame (HOF). The researchers modelled the natural logarithm of card price (y) as a function of the following independent variables:

Race:x1=1ifblack,0ifwhiteCardavailability:x2=1ifhigh,0iflowCardvintage:x3=yearcardprintedFinalist:x4=naturallogarithmofnumberoftimesplayeronfinalHOFballotPosition-QB::x5=1ifquarterback,0ifnotPosition-RB:x7=1ifrunningback,0ifnotPosition-WR:x8=1ifwidereceiver,0ifnotPosition-TEx9=1iftightend,0ifnotPosition-DL:x10=1ifdefensivelineman,0ifnotPosition-LB:x11=1iflinebacker,0ifnotPosition-DB:x12=1ifdefensiveback,0ifnot

[Note: For position, offensive lineman is the base level.]

  1. The model E(y)=β0+β1x1+β2x2+β3x3+β4x4+β5x5+β6x6+β7x7+β8x8+β9x9+β10x10+β11x11+β12x12 was fit to the data with the following results:R2=0.705,Ra2=0.681,F=26.9.Interpret the results, practically. Make an inference about the overall adequacy of the model.
  2. Refer to part a. Statistics for the race variable were reported as follows:β^1=-0.147,sβ^1=-0.145,t=-1.014,p-value=0.312 .Use this information to make an inference about the impact of race on the value of professional football players’ rookie cards.
  3. Refer to part a. Statistics for the card vintage variable were reported as follows:β^3=-0.074,sβ^3=0.007,t=-10.92,p-value=.000.Use this information to make an inference about the impact of card vintage on the value of professional football players’ rookie cards.
  4. Write a first-order model for E(y) as a function of card vintage x3and position x5-x12that allows for the relationship between price and vintage to vary depending on position.

Buy-side vs. sell-side analysts' earnings forecasts. Refer to the Financial Analysts Journal (Jul. /Aug. 2008) study of financial analysts' forecast earnings, Exercise 2.86 (p. 112). Recall that data were collected from 3,526 buy-side analysts and 58,562forecasts made by sell-side analysts, and the relative absolute forecast error was determined for each. The mean and standard deviation of forecast errors for both types of analysts are given in the table.

a. Construct a 95% confidence interval for the difference between the mean forecast error of buy-side analysts and the mean forecast error of sell-side analysts.

b. Based on the interval, part a, which type of analysis has the greater mean forecast error? Explain.

c. What assumptions about the underlying populations of forecast errors (if any) are necessary for the validity of the inference, part b?

Homework assistance for accounting students. How much assistance should accounting professors provide students for completing homework? Is too much assistance counterproductive? These were some of the questions of interest in a Journal of Accounting Education (Vol. 25, 2007) article. A total of 75 junior-level accounting majors who were enrolled in Intermediate Financial Accounting participated in an experiment. All students took a pretest on a topic not covered in class; then, each was given a homework problem to solve on the same topic. However, the students were randomly assigned different levels of assistance on the homework. Some (20 students) were given the completed solution, some (25 students) were given check figures at various steps of the solution, and the rest (30 students) were given no help. After finishing the homework, each student was given a posttest on the subject. One of the variables of interest to the researchers was the knowledge gain (or test score improvement), measured as the difference between the posttest and pretest scores. The sample means knowledge gains for the three groups of students are provided in the table.

a. The researchers theorized that as the level of homework assistance increased, the test score improvement from pretest to post test would decrease. Do the sample means reported in the table support this theory?

b. What is the problem with using only the sample means to make inferences about the population mean knowledge gains for the three groups of students?

c. The researchers conducted a statistical test of the Hypothesis to compare the mean knowledge gain of students in the "no solutions" group with the mean knowledge gain of students in the "check figures" group. Based on the theory, part a sets up the null and alternative hypotheses for the test.

d. The observed significance level of the t-test of the partc was reported as8248 Using α=.05, interpret this result.

e. The researchers conducted a statistical test of the hypothesis to compare the mean knowledge gain of students in the "completed solutions" group with the mean knowledge gain of students in the "check figures" group. Based on the theory, part a sets up the null and alternative hypotheses for the test.

f. The observed significance level of the role="math" localid="1652694732458" t-test of part e was reported as 1849. Using α=.05, interpret this result.

g. The researchers conducted a statistical test of the Hypothesis to compare the mean knowledge gain of students in the "no solutions" group with the mean knowledge gain of students in the "completed solutions" group. Based on the theory, part a sets up the null and alternative hypotheses for the test.

h. The observed significance level of the t-test of the part wasg reported as2726. Using role="math" localid="1652694677616" α=.05, interpret this result.

Last name and acquisition timing. Refer to the Journal of Consumer Research (August 2011) study of the last name effect in acquisition timing, Exercise 8.13 (p. 466). Recall that the mean response times (in minutes) to acquire free tickets were compared for two groups of MBA students— those students with last names beginning with one of the first nine letters of the alphabet and those with last names beginning with one of the last nine letters of the alphabet. How many MBA students from each group would need to be selected to estimate the difference in mean times to within 2 minutes of its true value with 95% confidence? (Assume equal sample sizes were selected for each group and that the response time standard deviation for both groups is σ≈ 9 minutes.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free