Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The gender diversity of a large corporation’s board of directors was studied in Accounting & Finance (December 2015). In particular, the researchers wanted to know whether firms with a nominating committee would appoint more female directors than firms without a nominating committee. One of the key variables measured at each corporation was the percentage of female board directors. In a sample of 491firms with a nominating committee, the mean percentage was 7.5%; in an independent sample of 501firms without a nominating committee, the mean percentage was role="math" localid="1652702402701" 4.3% .

a. To answer the research question, the researchers compared the mean percentage of female board directors at firms with a nominating committee with the corresponding percentage at firms without a nominating committee using an independent samples test. Set up the null and alternative hypotheses for this test.

b. The test statistic was reported as z=5.1 with a corresponding p-value of 0.0001. Interpret this result if α=0.05.

c. Do the population percentages for each type of firm need to be normally distributed for the inference, part b, to be valid? Why or why not?

d. To assess the practical significance of the test, part b, construct a 95% confidence interval for the difference between the true mean percentages at firms with and without a nominating committee. Interpret the result.

Short Answer

Expert verified

Finance is the administration, production, and analysis of cash or assets.

Step by step solution

01

Step-by-Step Solution Step 1: (a) Set up null and alternate hypotheses

Let μ1 be the mean percentage of female board directors at firms with nominating committees and μ2 be the mean percentage of female board directors at firms without nominating committees.

Null Hypothesis: The firms with a nominating committee would appoint female directors, same as firms without nominating committee.

H0:μ1μ2=0

Alternate Hypothesis: The firms with a nominating committee would appoint more female directors than the firms without nominating committee.

Ha:μ1μ2>0

02

(b) Interpret the result

The z value is given to be 5.51 , and the p-value is 0.0001.

The level of significance is 0.05.

As the p-value is less than the significance level, the null hypothesis should be rejected.

Therefore, the data provide sufficient evidence to indicate that μ1μ2>0.

So, the firms with a nominating committee would appoint more female directors than the firms without nominating committee.

03

(c) State the reason

The population percentage for each type of firm is not normally distributed for inference part (b) to be valid because the sample sizes for both types of firms are greater than 30. So, the Central Limit Theorem is applied to the test. The assumption that the population percentages for each type of firm are normally distributed is not required for the inference.

04

(d) Find the confidence interval

The formula for 95% z the confidence interval is

x1¯x2¯±zα/2σ1n1+σ2n2

For confidence level, the level of significance is 0.05.

So zα/2=z0.025=1.96,

Now,

z=(x1¯x¯2)σ12n1+σ22n25.51=(7.54.3)σ12n1+σ22n2σ12n1+σ22n2=3.25.51σ12n1+σ22n2=0.581

So, the 95% z confidence interval is

=3.2±1.96(0.581)=3.2±1.13876

Therefore, the confidence interval is (2.06,4.34).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Independent random samples from two populations with standard deviations σ1=2andσ2=8, respectively, are selected. The sample sizes and the sample means are recorded in the following table:

Sample 1

Sample 2

n1=58x¯1=17.5

n2=62x¯2=16.23

a. Calculate the standard error of the sampling distribution for Sample 1.

b. Calculate the standard error of the sampling distribution for Sample 2.

c. Suppose you were to calculate the difference between the sample means (x1x2). Find the mean and standard error of the sampling distribution (x1x2).

d. Will the statistic (x1x2) be normally distributed?

To use the t-statistic to test for a difference between the means of two populations, what assumptions must be made about the two populations? About the two samples?

Question: Refer to the Journal of Business Logistics (Vol. 36, 2015) study of the factors that lead to successful performance-based logistics projects, Exercise 2.45 (p. 95). Recall that the opinions of a sample of Department of Defense (DOD) employees and suppliers were solicited during interviews. Data on years of experience for the 6 commercial suppliers interviewed and the 11 government employees interviewed are listed in the accompanying table. Assume these samples were randomly and independently selected from the populations of DOD employees and commercial suppliers. Consider the following claim: “On average, commercial suppliers of the DOD have less experience than government employees.”

a. Give the null and alternative hypotheses for testing the claim.

b. An XLSTAT printout giving the test results is shown at the bottom of the page. Find and interpret the p-value of the test user.

c. What assumptions about the data are required for the inference, part b, to be valid? Check these assumptions graphically using the data in the PBL file.

Identify the rejection region for each of the following cases. Assume

v1=7andv2=9

a. Ha1222,α=.05

b. Ha1222,α=.01

c. Ha12σ22,α=.1withs12>s22

d. Ha1222,α=.025

Service without a smile. “Service with a smile” is a slogan that many businesses adhere to. However, some jobs (e.g., judges, law enforcement officers, and pollsters) require neutrality when dealing with the public. An organization will typically provide “display rules” to guide employees on what emotions they should use when interacting with the public. A Journal of Applied Psychology (Vol. 96, 2011) study compared the results of surveys conducted using two different types of display rules: positive (requiring a strong display of positive emotions) and neutral (maintaining neutral emotions at all times). In this designed experiment, 145undergraduate students were randomly assigned to either a positive display rule condition(n1=78)or a neutral display rule condition(n2=67). Each participant was trained to conduct the survey using the display rules. As a manipulation check, the researchers asked each participant to rate, on a scale of 1= “strongly agree” to5= “strongly disagree,” the statement, “This task requires me to be neutral in my expressions.”

a. If the manipulation of the participants was successful, which group should have the larger mean response? Explain.

b. The data for the study (simulated based on information provided in the journal article) are listed in the table above. Access the data and run an analysis to determine if the manipulation was successful. Conduct a test of hypothesis usingα=0.05 .

c. What assumptions, if any, are required for the inference from the test to be valid?

The data is given below

Positive Display Rule:

243333444444444444454444444444444445555555555555555555555555555555555555555555


Neutral Display Rule:

3321211122122232212222212222221222222232122212122322222222222122222


See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free