Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Refer to the Archives of Paediatrics and Adolescent Medicine (Dec. 2007) study of honey as a children’s cough remedy, Exercise 2.31 (p. 86). Children who were ill with an upper respiratory tract infection and their parents participated in the study. Parents were instructed to give their sick child dosage of liquid “medicine” before bedtime. Unknown to the parents, some were given a dosage of dextromethorphan (DM)—an over-the-counter cough medicine—while others were given a similar dose of honey. (Note: A third group gave their children no medicine.) Parents then rated their children’s cough symptoms, and the improvement in total cough symptoms score was determined for each child. The data (improvement scores) for the 35 children in the DM dosage group and the 35 in the honey dosage group are reproduced in the next table. Do you agree with the statement (extracted from the article), “Honey may be a preferable treatment for the cough and sleep difficulty associated with childhood upper respiratory tract infection”? Use the comparison of the two means methodology presented in this section to answer the question.

The data is given below:

Honey Dosage:

12111511101310415169141061081112128129111510159138121089512

DM Dosage:

469477791210116349781212412137101394410159126

Short Answer

Expert verified

An infection happens when bacteria get into your body and grow, causing sickness. Infections are classified into four types: virus, bacterium, fungus, and parasites.

Step by step solution

01

Step-by-Step Solution Step 1: Calculate the mean and standard deviation of both the groups

The mean and standard deviation of both the groups are

02

Conduct a z-test

Null Hypothesis: There is no difference between the Honey and Control groups.

H0:μ1μ2=0

Alternate Hypothesis: Honey is a preferable treatment. Ha:μ1μ2>0

Level of significance (α)=0.01

z=(x1¯x¯2)(μ1μ2)σ12n1+σ22n2=(10.718.33)0(2.86)235+(3.26)233=2.380.7455=3.19

The critical value is 2.33.

As the value z is more than the critical value, the null hypothesis should be rejected.

Therefore, the data provide sufficient evidence to indicate that μ1μ2>0.

So, honey may be a preferable treatment for the cough and sleep difficulty associated with childhood upper respiratory tract infection.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Impact of race on football card values. Refer to the Electronic Journal of Sociology (2007) study of the Impact of race on the value of professional football players’ “rookie” cards, Exercise 12.72 (p. 756). Recall that the sample consisted of 148 rookie cards of NFL players who were inducted into the Football Hall of Fame (HOF). The researchers modelled the natural logarithm of card price (y) as a function of the following independent variables:

Race:x1=1ifblack,0ifwhiteCardavailability:x2=1ifhigh,0iflowCardvintage:x3=yearcardprintedFinalist:x4=naturallogarithmofnumberoftimesplayeronfinalHOFballotPosition-QB::x5=1ifquarterback,0ifnotPosition-RB:x7=1ifrunningback,0ifnotPosition-WR:x8=1ifwidereceiver,0ifnotPosition-TEx9=1iftightend,0ifnotPosition-DL:x10=1ifdefensivelineman,0ifnotPosition-LB:x11=1iflinebacker,0ifnotPosition-DB:x12=1ifdefensiveback,0ifnot

[Note: For position, offensive lineman is the base level.]

  1. The model E(y)=β0+β1x1+β2x2+β3x3+β4x4+β5x5+β6x6+β7x7+β8x8+β9x9+β10x10+β11x11+β12x12 was fit to the data with the following results:R2=0.705,Ra2=0.681,F=26.9.Interpret the results, practically. Make an inference about the overall adequacy of the model.
  2. Refer to part a. Statistics for the race variable were reported as follows:β^1=-0.147,sβ^1=-0.145,t=-1.014,p-value=0.312 .Use this information to make an inference about the impact of race on the value of professional football players’ rookie cards.
  3. Refer to part a. Statistics for the card vintage variable were reported as follows:β^3=-0.074,sβ^3=0.007,t=-10.92,p-value=.000.Use this information to make an inference about the impact of card vintage on the value of professional football players’ rookie cards.
  4. Write a first-order model for E(y) as a function of card vintage x3and position x5-x12that allows for the relationship between price and vintage to vary depending on position.

The data for a random sample of 10 paired observations is shown below.

PairSample from Population 1

(Observation 1)

Sample from Population 2 (Observation 2)
12345678910
19253152493459471751
24273653553466512055

a. If you wish to test whether these data are sufficient to indicate that the mean for population 2 is larger than that for population 1, what are the appropriate null and alternative hypotheses? Define any symbols you use.

b. Conduct the test, part a, usingα=.10.

c. Find a 90%confidence interval for μd. Interpret this result.

d. What assumptions are necessary to ensure the validity of this analysis?

Question:Quality control. Refer to Exercise 5.68. The mean diameter of the bearings produced by the machine is supposed to be .5 inch. The company decides to use the sample mean from Exercise 5.68 to decide whether the process is in control (i.e., whether it is producing bearings with a mean diameter of .5 inch). The machine will be considered out of control if the mean of the sample of n = 25 diameters is less than .4994 inch or larger than .5006 inch. If the true mean diameter of the bearings produced by the machine is .501 inch, what is the approximate probability that the test will imply that the process is out of control?

Question: Refer to the Bulletin of Marine Science (April 2010) study of lobster trap placement, Exercise 6.29 (p. 348). Recall that the variable of interest was the average distance separating traps—called trap-spacing—deployed by teams of fishermen. The trap-spacing measurements (in meters) for a sample of seven teams from the Bahia Tortugas (BT) fishing cooperative are repeated in the table. In addition, trap-spacing measurements for eight teams from the Punta Abreojos (PA) fishing cooperative are listed. For this problem, we are interested in comparing the mean trap-spacing measurements of the two fishing cooperatives.

BT Cooperative

93

99

105

94

82

70

86

PA Cooperative

118

94

106

72

90

66

98


Source: Based on G. G. Chester, “Explaining Catch Variation Among Baja California Lobster Fishers Through Spatial Analysis of Trap-Placement Decisions,” Bulletin of Marine Science, Vol. 86, No. 2, April 2010 (Table 1).

a. Identify the target parameter for this study.b. Compute a point estimate of the target parameter.c. What is the problem with using the normal (z) statistic to find a confidence interval for the target parameter?d. Find aconfidence interval for the target parameter.e. Use the interval, part d, to make a statement about the difference in mean trap-spacing measurements of the two fishing cooperatives.f. What conditions must be satisfied for the inference, part e, to be valid?

Question: Independent random samples selected from two normal populations produced the sample means and standard deviations shown below.

Sample 1

Sample 2

n1= 17x¯1= 5.4s1= 3.4

role="math" localid="1660287338175" n2= 12x¯2=7.9s2=4.8

a. Conduct the testH0:(μ1-μ2)>10against Ha:(μ1-μ2)10. Interpret the results.

b. Estimateμ1-μ2 using a 95% confidence interval

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free