Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Comparing taste-test rating protocols. Taste-testers of new food products are presented with several competing food samples and asked to rate the taste of each on a 9-point scale (where1="dislike extremely" and9="like extremely"). In the Journal of Sensory Studies (June 2014), food scientists compared two different taste-testing protocols. The sequential monadic (SM) method presented the samples one-at-a-time to the taster in a random order, while the rank rating (RR) method presented the samples to the taster all at once, side-by-side. Consider the following experiment (similar to the one conducted in the journal): 50 consumers of apricot jelly were asked to taste test five different varieties. Half the testers used the SM protocol and half used the RR protocol during testing. In a second experiment, 50 consumers of cheese were asked to taste-test four different varieties. Again, half the testers used the SM protocol and half used the RR protocol during testing. For each product (apricot jelly and cheese), the mean taste scores of the two protocols (SM and RR) were compared. The results are shown in the accompanying tables.

a. Consider the five varieties of apricot jelly. Identify the varieties for which you can conclude that "the mean taste scores of the two protocols (SM and RR) differ significantly atα=.05."

b. Consider the four varieties of cheese. Identify the varieties for which you can conclude that "the mean taste scores of the two protocols (SM and RR) differ significantly atα=.05."

c. Explain why the taste-test scores do not need to be normally distributed for the inferences, parts a and b, to be valid.

Short Answer

Expert verified

(a)In the first experiment, allp-values are greater thanα=0.05.

It is known that if p-value is less than the level of significance value, then it can be said that the varieties are significantly different.

(b) For A, Cand D, the mean taste scores of the two protocols differ significantly.

(c) This is because the sample size is already large enough to be normally distributed as per the Central Limit Theorem, by which is stated that as the sample size becomes large, the sampling distribution becomes approximately normal.

Step by step solution

01

Step-by-Step SolutionStep 1: Given information

One survey was done on taste-teasers of a new food. The foods are rated on a 9 point scale. 50 consumers are divided in two groups. Half of the testers used the SM protocol and half used RR protocol. In another experiment, 50 consumers are asked in the same way but with four varieties of foods.

02

(a) The varieties of apricot jelly differ significantly

In the first experiment, allp-values are greater thanα=0.05.

It is known that ifp-value is less than the level of significance value, then it can be said that the varieties are significantly different.

Here, it cannot be concluded that the mean taste scores of the two protocols differ for any of the varieties.

03

(b) The varieties of cheese differ significantly

In the second experiment, the p-values for variety A,Cand Dare 0.013,0.002, and 0.034respectively, which are less than α=0.05.

It is known that, ifp-value is less than the level of significance value, then it can be said that the varieties are significantly different.

Therefore, the mean taste scores of the two protocols differ significantly for variety A, C, and D.

04

(c) The taste-test scores do not need to be normally distributed for the inferences to be valid

Here, in two experiments the sample size is greater than 30.

If the samples are larger, then all samples follow approximately normal based on the central limit theorem. Therefore, the population of taste test scores that are normal is not needed.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Identify the rejection region for each of the following cases. Assume

v1=7andv2=9

a. Ha1222,α=.05

b. Ha1222,α=.01

c. Ha12σ22,α=.1withs12>s22

d. Ha1222,α=.025

Question: Independent random samples n1 =233 and n2=312 are selected from two populations and used to test the hypothesis Ha:(μ1-μ)2=0against the alternative Ha:(μ1-μ)20

.a. The two-tailed p-value of the test is 0.1150 . Interpret this result.b. If the alternative hypothesis had been Ha:(μ1-μ)2<0 , how would the p-value change? Interpret the p-value for this one-tailed test.

Enough money has been budgeted to collect independent random samples of size n1=n2=100from populations 1 and 2 to estimate localid="1664867109106" μ1-μ2. Prior information indicates that σ1=σ2=10. Have sufficient funds been allocated to construct a 90% confidence interval forμ1-μ2of width 5 or less? Justify your answer.

Question: Independent random samples from approximately normal populations produced the results shown below.

Sample 1

Sample 2

52 33 42 4441 50 44 5145 38 37 4044 50 43

52 43 47 5662 53 61 5056 52 53 6050 48 60 55

a. Do the data provide sufficient evidence to conclude that (μ1-μ2)>10? Test usingα=0.1.

b. Construct a confidence interval for (μ1-μ2). Interpret your result.

Studies have established that rudeness in the workplace can lead to retaliatory and counterproductive behaviour. However, there has been little research on how rude behaviours influence a victim’s task performance. Such a study was conducted, and the results were published in the Academy of Management Journal (Oct. 2007). College students enrolled in a management course were randomly assigned to two experimental conditions: rudeness condition (students) and control group (students). Each student was asked to write down as many uses for a brick as possible in minutes. For those students in the rudeness condition, the facilitator displayed rudeness by generally berating students for being irresponsible and unprofessional (due to a late-arriving confederate). No comments were made about the late-arriving confederate to students in the control group. The number of different uses for brick was recorded for each student and is shown below. Conduct a statistical analysis (at α=0.01) to determine if the true mean performance level for students in the rudeness condition is lower than the actual mean performance level for students in the control group.

The data is given below

Control Group:

124516217201920191023160491317130212117311119912185213015421211101311361013161228191230


Rudeness Condition:

411181196511912757311191110789107114135478381591610071513921310

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free