Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Refer to the Journal of Business Logistics (Vol. 36, 2015) study of the factors that lead to successful performance-based logistics projects, Exercise 2.45 (p. 95). Recall that the opinions of a sample of Department of Defense (DOD) employees and suppliers were solicited during interviews. Data on years of experience for the 6 commercial suppliers interviewed and the 11 government employees interviewed are listed in the accompanying table. Assume these samples were randomly and independently selected from the populations of DOD employees and commercial suppliers. Consider the following claim: “On average, commercial suppliers of the DOD have less experience than government employees.”

a. Give the null and alternative hypotheses for testing the claim.

b. An XLSTAT printout giving the test results is shown at the bottom of the page. Find and interpret the p-value of the test user.

c. What assumptions about the data are required for the inference, part b, to be valid? Check these assumptions graphically using the data in the PBL file.

Short Answer

Expert verified

Answer

The total procedure of controlling how resources are bought, maintained, as well as delivered to their eventual location is referred to as logistics

Step by step solution

01

(a) State the null and alternate hypothesis 

Let μ1be the mean years of experience for commercial suppliers and μ2be the mean years of experience for government employees.

The hypothesis that the company would like to test will be:

Null hypothesis: H0:μ1=μ2. That is, the mean years of experience for commercial suppliers is not less than the mean years of experience for government employees.

Alternate hypothesis: H0:μ1<μ2. That is, the mean years of experience for commercial suppliers are less than the mean years of experience for government employees.

02

(b) Interpret the p-value 

It is given that,

The level of significance 5% is0.05 .

n1=6,n2=11x¯1=12.33,x¯2=20.82Z=x¯1-x¯2-μ1-μ2σ12n+σ22n=12.33-20.82-08.1026+8.93211=-8.494.26=-1.993

So, the p-value is .046.

As the p-value is less than the significance level, so the null hypothesis will be rejected. Therefore, it can be concluded that the mean years of experience for commercial suppliers is less than the mean years of experience for government employees.

03

(c) State the assumptions

The assumptions are:

  • Each sample is taken from simple random sampling.
  • Each sample is independent.
  • Each sample size is small.
  • Each sample is approximately normally distributed.
  • The population variance of the two samples is equal.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Non-destructive evaluation. Non-destructive evaluation(NDE) describes methods that quantitatively characterize materials, tissues, and structures by non-invasive means, such as X-ray computed tomography, ultrasonic, and acoustic emission. Recently, NDE was used to detect defects in steel castings (JOM,May 2005). Assume that the probability that NDE detects a “hit” (i.e., predicts a defect in a steel casting) when, in fact, a defect exists is .97. (This is often called the probability of detection.) Also assume that the probability that NDE detects a hit when, in fact, no defect exists is .005. (This is called the probability of a false call.) Past experience has shown a defect occurs once in every 100 steel castings. If NDE detects a hit for a particular steel casting, what is the probability that an actual defect exists?

Optimal goal target in soccer. When attempting to score a goal in soccer, where should you aim your shot? Should you aim for a goalpost (as some soccer coaches teach), the middle of the goal, or some other target? To answer these questions, Chance (Fall 2009) utilized the normal probability distribution. Suppose the accuracy x of a professional soccer player’s shots follows a normal distribution with a mean of 0 feet and a standard deviation of 3 feet. (For example, if the player hits his target,x=0; if he misses his target 2 feet to the right, x=2; and if he misses 1 foot to the left,x=-1.) Now, a regulation soccer goal is 24 feet wide. Assume that a goalkeeper will stop (save) all shots within 9 feet of where he is standing; all other shots on goal will score. Consider a goalkeeper who stands in the middle of the goal.

a. If the player aims for the right goalpost, what is the probability that he will score?

b. If the player aims for the center of the goal, what is the probability that he will score?

c. If the player aims for halfway between the right goal post and the outer limit of the goalkeeper’s reach, what is the probability that he will score?

Patron amenability to supply biomass. Relate to the Biomass and Energy (Vol. 36, 2012) study of the amenability of directors to supply biomass products similar to fat hay, Exercise8.20 (p. 469). Recall that independent samples of Missouri directors and Illinois directors were surveyed. Another aspect of the study concentrated on the service directors who were willing to supply. One essential service involves windrowing (mowing and piling) hay. Of the 558 Missouri directors surveyed, 187 were willing to offer windrowing. Of the 940 Illinois directors surveyed, 380 were willing to offer windrowing services. The experimenters want to know if the proportion of directors willing to offer windrowing services to the biomass request differs for the two areas, Missouri and Illinois.

a. Specify the parameter of interest to the experimenters.

b. Set up the null and indispensable suppositions for testing whether the proportion of directors willing to offer windrowing services differs in Missouri and Illinois.

c. A Minitab analysis of the data is given below. Detect the test statistic on the printout.

d. provide the rejection region for the test using a = .01.

e. Detect the p- the value of the test on the printout.

f. Make the applicable conclusion using both the p-value and rejection region approach. Your conclusions should agree.

Drug content assessment. Scientists at GlaxoSmithKlineMedicines Research Center used high-performance liquidchromatography (HPLC) to determine the amountof drug in a tablet produced by the company (Analytical

Chemistry, Dec. 15, 2009). Drug concentrations (measuredas a percentage) for 50 randomly selected tablets are listedin the table below and saved in the accompanying file.

a. Descriptive statistics for the drug concentrations areshown at the top of the XLSTAT printout on the nextpage. Use this information to assess whether the dataare approximately normal.

b. An XLSTAT normal probability plot follows. Use thisinformation to assess whether the data are approximatelynormal.

91.28 92.83 89.35 91.90 82.85 94.83 89.83 89.00 84.62

86.96 88.32 91.17 83.86 89.74 92.24 92.59 84.21 89.36

90.96 92.85 89.39 89.82 89.91 92.16 88.67 89.35 86.51

89.04 91.82 93.02 88.32 88.76 89.26 90.36 87.16 91.74

86.12 92.10 83.33 87.61 88.20 92.78 86.35 93.84 91.20

93.44 86.77 83.77 93.19 81.79

Descriptive statistics(Quantitative data)

Statistic

Content

Nbr.of Observation

50

Minimum

81.79

Maximum

94.83

1st Quartile

87.2725

Median

89.375

3rd Quartile

91.88

Mean

89.2906

Variance(n-1)

10.1343

Standard deviation(n-1)

3.1834

Random samples of size n1=400 andn2=500 were drawn from populations 1 and 2, respectively. The samples yieldedx1=105 and x2=140. TestH0:p1-p20 againstHa:p1-p2<0at the 1% level of significance.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free