Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: The speed with which consumers decide to purchase a product was investigated in the Journal of Consumer Research (August 2011). The researchers theorized that consumers with last names that begin with letters later in the alphabet will tend to acquire items faster than those whose last names begin with letters earlier in the alphabet—called the last name effect. MBA students were offered free tickets to an event for which there was a limitedsupply of tickets. The first letter of the last name of those who responded to an email offer in time to receive the tickets was noted as well as the response time (measured in minutes). The researchers compared the response times for two groups of MBA students: (1) those with last names beginning with one of the first nine letters of the alphabet and (2) those with last names beginning with one of the last nine letters of the alphabet. Summary statistics for the two groups are provided in the table.

First 9

Letters: A–I

Last 9

Letters: R–Z

Sample size

25

25

Mean response time (minutes)

25.08

19.38

Standard deviation (minutes)

10.41

7.12

Source: Based on K. A. Carlson and J. M. Conrad, “The Last Name Effect: How Last Name Influences Acquisition Timing,” Journal of Consumer Research, Vol. 38, No. 2, August 2011.

a. Construct a 95% confidence interval for the difference between the true mean response times for MBA students in the two groups.

b. Based on the interval, part a, which group has the shorter mean response time? Does this result support the researchers’ last name effect theory? Explain.

Short Answer

Expert verified

Answer

A confidence interval expresses the level of uncertainty in a given data.

Step by step solution

01

(a) Find confidence interval.

n1=25,n2=25,x¯1=25.08,x¯2=19.38σ1=10.41,σ2=7.12

The degree of freedom will be

=n1+n2-2=25+25-2=48

From the t-distribution table, the critical value at 0.05 thelevel of significance for 48 degrees of freedom is 2.011.

The pooled standard deviation is

sp=n1-1σ12+n2-1σ22n1+n2-2=25-110.412+25-17.12225+25-2=3817.548=8.92

The 95% confidence interval for the difference in means

=x¯1-x¯2±tα/2×sp1n1+1n2=25.08-19.38±2.011×8.92125+125=5.7±5.07

Thus, the confidence interval for means difference is0.63to 10.77

02

(b) Give a conclusion.

The 95%confidence interval contains only positive numbers and does not contain zero, which shows that there is a significant difference between the two groups.

This result supports the researcher's "last name effect" theory that the mean response time for the students whose last names begin with the letters R - Z is shorter than the mean response time for the students whose last names begin with the letters A - I.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Hospital work-related injuries. According to an Occupational and Health Safety Administration (OHSA) 2014 report, a hospital is one of the most dangerous places to work. The major cause of injuries that resulted in missed work was overexertion. Almost half (48%) of the injuries that result in missed work were due to overexertion. Let x be the number of hospital-related injuries caused by overexertion.

a. Explain why x is approximately a binomial random variable.

b. Use the OHSA report to estimate p for the binomial random variable of part a.

c. Consider a random sample of 100 hospital workers who missed work due to an on-the-job injury. Use the p from part b to find the mean and standard deviation of, the proportion of the sampled workers who missed work due to overexertion.

d. Refer to part c. Find the probability that the sample proportion is less than .40.

Salmonella in yield. Salmonella infection is the most common bacterial foodborne illness in the United States. How current is Salmonella in yield grown in the major agricultural region of Monterey, California? Experimenters from the U.S. Department of Agriculture (USDA) conducted tests for Salmonella in yield grown in the region and published their results in Applied and Environmental Microbiology (April 2011). In a sample of 252 societies attained from water used to wash the region, 18 tested positive for Salmonella. In an independent sample of 476 societies attained from the region's wildlife (e.g., catcalls), 20 tested positive for Salmonella. Is this sufficient substantiation for the USDA to state that the frequency of Salmonella in the region's water differs from the frequency of Salmonella in the region's wildlife? Use a = .01 to make your decision

Predicting software blights. Relate to the Pledge Software Engineering Repository data on 498 modules of software law written in “C” language for a NASA spacecraft instrument, saved in the train. (See Exercise 3.132, p. 209). Recall that the software law in each module was estimated for blights; 49 were classified as “true” (i.e., the module has imperfect law), and 449 were classified as “false” (i.e., the module has corrected law). Consider these to be Arbitrary independent samples of software law modules. Experimenters prognosticated the disfigurement status of each module using the simple algorithm, “If the number of lines of law in the module exceeds 50, prognosticate the module to have a disfigurement.” The accompanying SPSS printout shows the number of modules in each of the two samples that were prognosticated to have blights (PRED_LOC = “yes”) and prognosticated to have no blights (PRED_LOC = “no”). Now, define the delicacy rate of the algorithm as the proportion of modules. That was rightly prognosticated. Compare the delicacy rate of the algorithm when applied to modules with imperfect law with the delicacy rate of the algorithm when applied to modules with correct law. Use a 99-confidence interval.

DEFECT*PRED_LOC crosstabulation


PRED_LOC
total
noyes

DEFECT False

True

total

440

29

429

49

20

69

449

49

498

Question: A company sent its employees to attend two different English courses. The company is interested in knowing if there is any difference between the two courses attended by its employees. When the employees returned from the courses, the company asked them to take a common test. The summary statistics of the test results of each of the two English courses are recorded in the following table:

a. Identify the parameter(s) that would help the company determine the difference between the two courses.

b. State the appropriate null and alternative hypotheses that the company would like to test.

c. After conducting the hypothesis test at thesignificance level, the company found the p-value. Interpret this result for the company.

Bankruptcy effect on U.S. airfares. Both Delta Airlines and USAir filed for bankruptcy. A study of the impact of bankruptcy on the fares charged by U.S. airlines was published in Research in Applied Economics (Vol. 2, 2010). The researchers collected data on Orlando-bound airfares for three airlines—Southwest (a stable airline), Delta (just entering bankruptcy at the time), and USAir (emerging from bankruptcy). A large sample of nonrefundable ticket prices was obtained for each airline following USAir’s emergence from bankruptcy, and then a 95% confidence interval for the true mean airfare was obtained for each. The results for 7-day advance bookings are shown in the accompanying table.

a. What confidence coefficient was used to generate the confidence intervals?

b. Give a practical interpretation of each of the 95% confidence intervals. Use the phrase “95% confident” in your answer.

c. When you say you are “95% confident,” what do you mean?

d. If you want to reduce the width of each confidence interval, should you use a smaller or larger confidence coefficient?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free