Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

4.135 Suppose xhas an exponential distribution with θ=1. Find

the following probabilities:

a.P(x>1)b.P(x3)cP(x>1.5)d.P(x5)

Short Answer

Expert verified
  1. .The probability is 0.3679
  2. The probability is 0.9502
  3. The probability is 0.2231
  4. The probability is 0.9933

Step by step solution

01

Given Information

The random variable x has an exponential distribution withθ=1

02

The probability density function (PDF) of x

Here x is a random variable with parametersθ=1

The pdf of x is given by,

f(x,θ)=1θexp-xθ,x>0

Here, θ=1

f(x)=exp(-x);x>0

03

Finding cdf of x

F(x)=P(Xx)=0xf(t)dt=0xexp(-t)dt=exp(-t)-10x=-exp(-x)+1=1-exp(-x)F(x)=1-exp(-x)

04

Finding the probability when P(x > 1)

a.P(x>1)=1-P(x1)=1-F(1)=1-1-exp(-1)=exp(-1)=0.37879=0.3679

Thus, the required probability is 0.3679.

05

Finding the probability when P(x≤3)

b.P(x3)=F(3)=1-exp(-3)=1-0.049787=0.950213=0.9502

Thus, the required probability is 0.9502.

06

Finding the probability when P(x>1.5)

c.P(x>1.5)=1-P(x1.5)=1-F(1.5)=1-1-exp(-1.5)=exp(-1.5)=0.22313=0.2231

The required probability is 0.2231.

07

Finding the probability when P(x≤5)

d.P(x5)=F(5)=1-exp(-5)=1-0.006738=0.993262=0.9933

The required probability is0.9933.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Buy-side vs. sell-side analysts' earnings forecasts. Refer to the Financial Analysts Journal (Jul. /Aug. 2008) study of financial analysts' forecast earnings, Exercise 2.86 (p. 112). Recall that data were collected from 3,526 buy-side analysts and 58,562forecasts made by sell-side analysts, and the relative absolute forecast error was determined for each. The mean and standard deviation of forecast errors for both types of analysts are given in the table.

a. Construct a 95% confidence interval for the difference between the mean forecast error of buy-side analysts and the mean forecast error of sell-side analysts.

b. Based on the interval, part a, which type of analysis has the greater mean forecast error? Explain.

c. What assumptions about the underlying populations of forecast errors (if any) are necessary for the validity of the inference, part b?

The data for a random sample of six paired observations are shown in the next table.

a. Calculate the difference between each pair of observations by subtracting observation two from observation 1. Use the differences to calculate d¯andsd2.

b. If μ1andμ2are the means of populations 1 and 2, respectively, expressed μdin terms of μ1andμ2.

PairSample from Population 1

(Observation 1)

Sample from Population 2(Observation 2)
123456739648417247

c. Form a 95% confidence interval for μd.

d. Test the null hypothesis H0d=0against the alternative hypothesis Had0. Useα=.05 .

A paired difference experiment produced the following results:

nd=38,x¯1=92,x¯2=95.5,d¯=-3.5,sd2=21

a. Determine the values zfor which the null hypothesis μ1μ2=0would be rejected in favor of the alternative hypothesis μ1μ2<0 Use .role="math" localid="1652704322912" α=.10

b. Conduct the paired difference test described in part a. Draw the appropriate conclusions.

c. What assumptions are necessary so that the paired difference test will be valid?

d. Find a90% confidence interval for the mean difference μd.

e. Which of the two inferential procedures, the confidence interval of part d or the test of the hypothesis of part b, provides more information about the differences between the population means?

Optimal goal target in soccer. When attempting to score a goal in soccer, where should you aim your shot? Should you aim for a goalpost (as some soccer coaches teach), the middle of the goal, or some other target? To answer these questions, Chance (Fall 2009) utilized the normal probability distribution. Suppose the accuracy x of a professional soccer player’s shots follows a normal distribution with a mean of 0 feet and a standard deviation of 3 feet. (For example, if the player hits his target,x=0; if he misses his target 2 feet to the right, x=2; and if he misses 1 foot to the left,x=-1.) Now, a regulation soccer goal is 24 feet wide. Assume that a goalkeeper will stop (save) all shots within 9 feet of where he is standing; all other shots on goal will score. Consider a goalkeeper who stands in the middle of the goal.

a. If the player aims for the right goalpost, what is the probability that he will score?

b. If the player aims for the center of the goal, what is the probability that he will score?

c. If the player aims for halfway between the right goal post and the outer limit of the goalkeeper’s reach, what is the probability that he will score?

The “winner’s curse” in transaction bidding. In transaction bidding, the “winner’s curse” is the miracle of the winning (or loftiest) shot price being above the anticipated value of the item being auctioned. The Review of Economics and Statistics (Aug. 2001) published a study on whether shot experience impacts the liability of the winner’s curse being. Two groups of a stab in a sealed-shot transaction were compared (1)super-experienced stab and (2) less educated stab. In the super-experienced group, 29 of 189 winning flings were above the item’s anticipated value; 32 of 149 winning flings were above the item’s anticipated value in the less-educated group.

  1. Find an estimate of p1, the true proportion of super educated stab who fell prey to the winner’s curse
  2. Find an estimate of p2, the true proportion of less-educated stab who fell prey to the winner’s curse.
  3. Construct a 90 confidence interval for p1-p2.
  4. d. Give a practical interpretation of the confidence interval, part c. Make a statement about whether shot experience impacts the liability of the winner’s curse being.
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free