Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

4.132 Suppose xis a random variable best described by a uniform

probability distribution with c= 3 and d= 7.

a. Find f(x)

b. Find the mean and standard deviation of x.

c. FindP(μ-σxμ+σ)

Short Answer

Expert verified

a. The probability density function is

f(x)=0.253x70;otherwise

b. The mean is 5 and standard deviation is 1.1547.

c.P(μ-σxμ+σ)

Step by step solution

01

Given Information

Here, x is a uniform random variable with parameters c=3 and d=7.

02

Finding the pdf of x

a.

The probability density function random variable x is given by

f(x)=1d-c;c<x<d

Here, c=3 and d=7.

So, the pdf of x is:

f(x)=17-3=14=0.25

Thus, f (x) = 0.25 ; 3 < x < 7

03

Finding the mean and standard deviation of x.

b.

The mean of the random variable x is given by,

μ=c+d2=3+72=102=5

The standard deviation of x is given by,

σ=d-c12=7-312=423=23=1.1547

Thus, the mean μ=5and standard deviation σ=1.1547.

04

Finding the P(μ-σ≤x≤μ+σ)

c.P(μ-σxμ+σ)=μ-σμ+σf(x)dx=μ-σμ+σ0.25dx=0.25μ-σμ+σdx=0.25xμ-σμ+σ=0.25μ+σ-μ+σ=0.25×2σ=0.50×23=0.5774

So, the required probability is 0.5774.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Gonzaga University professors conducted a study of television commercials and published their results in the Journal of Sociology, Social Work and Social Welfare (Vol. 2, 2008). The key research question was as follows: “Do television advertisers use religious symbolism to sell goods and services?” In a sample of 797 TV commercials collected ten years earlier, only 16 commercials used religious symbolism. Of the sample of 1,499 TV commercials examined in the more recent study, 51 commercials used religious symbolism. Conduct an analysis to determine if the percentage of TV commercials that use religious symbolism has changed over time. If you detect a change, estimate the magnitude of the difference and attach a measure of reliability to the estimate.

Question: Refer to the Bulletin of Marine Science (April 2010) study of lobster trap placement, Exercise 6.29 (p. 348). Recall that the variable of interest was the average distance separating traps—called trap-spacing—deployed by teams of fishermen. The trap-spacing measurements (in meters) for a sample of seven teams from the Bahia Tortugas (BT) fishing cooperative are repeated in the table. In addition, trap-spacing measurements for eight teams from the Punta Abreojos (PA) fishing cooperative are listed. For this problem, we are interested in comparing the mean trap-spacing measurements of the two fishing cooperatives.

BT Cooperative

93

99

105

94

82

70

86

PA Cooperative

118

94

106

72

90

66

98


Source: Based on G. G. Chester, “Explaining Catch Variation Among Baja California Lobster Fishers Through Spatial Analysis of Trap-Placement Decisions,” Bulletin of Marine Science, Vol. 86, No. 2, April 2010 (Table 1).

a. Identify the target parameter for this study.b. Compute a point estimate of the target parameter.c. What is the problem with using the normal (z) statistic to find a confidence interval for the target parameter?d. Find aconfidence interval for the target parameter.e. Use the interval, part d, to make a statement about the difference in mean trap-spacing measurements of the two fishing cooperatives.f. What conditions must be satisfied for the inference, part e, to be valid?

Service without a smile. “Service with a smile” is a slogan that many businesses adhere to. However, some jobs (e.g., judges, law enforcement officers, and pollsters) require neutrality when dealing with the public. An organization will typically provide “display rules” to guide employees on what emotions they should use when interacting with the public. A Journal of Applied Psychology (Vol. 96, 2011) study compared the results of surveys conducted using two different types of display rules: positive (requiring a strong display of positive emotions) and neutral (maintaining neutral emotions at all times). In this designed experiment, 145undergraduate students were randomly assigned to either a positive display rule condition(n1=78)or a neutral display rule condition(n2=67). Each participant was trained to conduct the survey using the display rules. As a manipulation check, the researchers asked each participant to rate, on a scale of 1= “strongly agree” to5= “strongly disagree,” the statement, “This task requires me to be neutral in my expressions.”

a. If the manipulation of the participants was successful, which group should have the larger mean response? Explain.

b. The data for the study (simulated based on information provided in the journal article) are listed in the table above. Access the data and run an analysis to determine if the manipulation was successful. Conduct a test of hypothesis usingα=0.05 .

c. What assumptions, if any, are required for the inference from the test to be valid?

The data is given below

Positive Display Rule:

243333444444444444454444444444444445555555555555555555555555555555555555555555


Neutral Display Rule:

3321211122122232212222212222221222222232122212122322222222222122222


Question: Consumers’ attitudes toward advertising. The two most common marketing tools used for product advertising are ads on television and ads in a print magazine. Consumers’ attitudes toward television and magazine advertising were investigated in the Journal of Advertising (Vol. 42, 2013). In one experiment, each in a sample of 159 college students were asked to rate both the television and the magazine marketing tool on a scale of 1 to 7 points according to whether the tool was a good example of advertising, a typical form of advertising, and a representative form of advertising. Summary statistics for these “typicality” scores are provided in the following table. One objective is to compare the mean ratings of TV and magazine advertisements.

a. The researchers analysed the data using a paired samples t-test. Explain why this is the most valid method of analysis. Give the null and alternative hypotheses for the test.

b. The researchers reported a paired t-value of 6.96 with an associated p-value of .001 and stated that the “mean difference between television and magazine advertising was statistically significant.” Explain what this means in the context of the hypothesis test.

c. To assess whether the result is “practically significant,” we require a confidence interval for the mean difference. Although this interval was not reported in the article, you can compute it using the information provided in the table. Find a 95% confidence interval for the mean difference and interpret the result. What is your opinion regarding whether the two means are “practically significant.”

Source: H. S. Jin and R. J. Lutz, “The Typicality and Accessibility of Consumer Attitudes Toward Television Advertising: Implications for the Measurement of Attitudes Toward Advertising in General,” Journal of Advertising, Vol. 42, No. 4, 2013 (from Table 1)

Suppose you want to estimate the difference between two population means correct to within 1.8 with a 95% confidence interval. If prior information suggests that the population variances are approximately equal to σ12=σ22=14 and you want to select independent random samples of equal size from the populations, how large should the sample sizes n1, and n2, be?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free