Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Independent random samples selected from two normal populations produced the sample means and standard deviations shown below.

Sample 1

Sample 2

n1= 17x¯1= 5.4s1= 3.4

role="math" localid="1660287338175" n2= 12x¯2=7.9s2=4.8

a. Conduct the testH0:(μ1-μ2)>10against Ha:(μ1-μ2)10. Interpret the results.

b. Estimateμ1-μ2 using a 95% confidence interval

Short Answer

Expert verified

Answer

A confidence interval denotes the likelihood that a population parameter will drop among two specified numbers.

Step by step solution

01

(a) Conduct the test 

For Sample 1

x¯1=5.4n1=17s1=3.4

For Sample 2

x¯2=7.9n2=12s2=4.8

The null hypothesis isH0:μ1-μ2=10, the alternate hypothesis isH0:μ1-μ210

Let us assume the level of significance is 0.05.

The degree of freedom will be

=n1+n2-2=12+17-2=27

From the t-distribution table, the critical value at 0.05 thelevel of significance for 27 degrees of freedom is 2.052.

The pooled standard deviation issp=n1-1s12+n2-1s22n1+n2-2

=17-13.42+12-14.8217+12-2=184.96+253.4427=4.03t=x1¯-x¯2-μ1-μ2sp1n1+1n2=5.4-7.9-04.03117+112=-2.51.52=-1.644

Since, -1.644<2.052, so the null hypothesis will not be rejected.

Therefore, we can conclude that μ1-μ2.

02

(b) Find confidence interval. 

The 95% confidence interval for the difference in means

=x¯1-x¯2±tα/2×sp1n1+1n2=5.4-7.9±2.052×4.03117+112=-2.5±2.052×1.52=-2.5±3.12

Thus, the confidence interval for the mean difference is -5.62to 0.62.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Promotion of supermarket vegetables. A supermarket chain is interested in exploring the relationship between the sales of its store-brand canned vegetables (y), the amount spent on promotion of the vegetables in local newspapers(x1) , and the amount of shelf space allocated to the brand (x2 ) . One of the chain’s supermarkets was randomly selected, and over a 20-week period, x1 and x2 were varied, as reported in the table.

Week

Sales, y

Advertising expenses,

Shelf space,

Interaction term,

1

2010

201

75

15075

2

1850

205

50

10250

3

2400

355

75

26625

4

1575

208

30

6240

5

3550

590

75

44250

6

2015

397

50

19850

7

3908

820

75

61500

8

1870

400

30

12000

9

4877

997

75

74775

10

2190

515

30

15450

11

5005

996

75

74700

12

2500

625

50

31250

13

3005

860

50

43000

14

3480

1012

50

50600

15

5500

1135

75

85125

16

1995

635

30

19050

17

2390

837

30

25110

18

4390

1200

50

60000

19

2785

990

30

29700

20

2989

1205

30

36150

  1. Fit the following model to the data:yβ0+β1x1+β2x2+β3x1x2+ε
  2. Conduct an F-test to investigate the overall usefulness of this model. Useα=.05 .
  3. Test for the presence of interaction between advertising expenditures and shelf space. Useα=.05 .
  4. Explain what it means to say that advertising expenditures and shelf space interact.
  5. Explain how you could be misled by using a first-order model instead of an interaction model to explain how advertising expenditures and shelf space influence sales.
  6. Based on the type of data collected, comment on the assumption of independent errors.

Find the numerical value of

a.6! b.(109)c. (101)d.(63)e.0!

Entrepreneurial careers of MBA alumni. Are African American MBA scholars more likely to begin their careers as entrepreneurs than white MBA scholars? This was a question of interest to the Graduate Management Admission Council (GMAC). GMAC Research Reports (Oct. 3, 2005) published the results of a check of MBA alumni. Of the African Americans who responded to the check, 209 reported their employment status after scaling as tone-employed or a small business proprietor. Of the whites who responded to the check, 356 reported their employment status after scaling as tone-employed or a small business proprietor. Use this information to answer the exploration question.

Independent random samples from two populations with standard deviations σ1=2andσ2=8, respectively, are selected. The sample sizes and the sample means are recorded in the following table:

Sample 1

Sample 2

n1=58x¯1=17.5

n2=62x¯2=16.23

a. Calculate the standard error of the sampling distribution for Sample 1.

b. Calculate the standard error of the sampling distribution for Sample 2.

c. Suppose you were to calculate the difference between the sample means (x1x2). Find the mean and standard error of the sampling distribution (x1x2).

d. Will the statistic (x1x2) be normally distributed?

Last name and acquisition timing. Refer to the Journal of Consumer Research (August 2011) study of the last name effect in acquisition timing, Exercise 8.13 (p. 466). Recall that the mean response times (in minutes) to acquire free tickets were compared for two groups of MBA students— those students with last names beginning with one of the first nine letters of the alphabet and those with last names beginning with one of the last nine letters of the alphabet. How many MBA students from each group would need to be selected to estimate the difference in mean times to within 2 minutes of its true value with 95% confidence? (Assume equal sample sizes were selected for each group and that the response time standard deviation for both groups is σ≈ 9 minutes.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free