Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Independent random samples selected from two normal populations produced the sample means and standard deviations shown below.

Sample 1

Sample 2

n1= 17x¯1= 5.4s1= 3.4

role="math" localid="1660287338175" n2= 12x¯2=7.9s2=4.8

a. Conduct the testH0:(μ1-μ2)>10against Ha:(μ1-μ2)10. Interpret the results.

b. Estimateμ1-μ2 using a 95% confidence interval

Short Answer

Expert verified

Answer

A confidence interval denotes the likelihood that a population parameter will drop among two specified numbers.

Step by step solution

01

(a) Conduct the test 

For Sample 1

x¯1=5.4n1=17s1=3.4

For Sample 2

x¯2=7.9n2=12s2=4.8

The null hypothesis isH0:μ1-μ2=10, the alternate hypothesis isH0:μ1-μ210

Let us assume the level of significance is 0.05.

The degree of freedom will be

=n1+n2-2=12+17-2=27

From the t-distribution table, the critical value at 0.05 thelevel of significance for 27 degrees of freedom is 2.052.

The pooled standard deviation issp=n1-1s12+n2-1s22n1+n2-2

=17-13.42+12-14.8217+12-2=184.96+253.4427=4.03t=x1¯-x¯2-μ1-μ2sp1n1+1n2=5.4-7.9-04.03117+112=-2.51.52=-1.644

Since, -1.644<2.052, so the null hypothesis will not be rejected.

Therefore, we can conclude that μ1-μ2.

02

(b) Find confidence interval. 

The 95% confidence interval for the difference in means

=x¯1-x¯2±tα/2×sp1n1+1n2=5.4-7.9±2.052×4.03117+112=-2.5±2.052×1.52=-2.5±3.12

Thus, the confidence interval for the mean difference is -5.62to 0.62.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Entrepreneurial careers of MBA alumni. Are African American MBA scholars more likely to begin their careers as entrepreneurs than white MBA scholars? This was a question of interest to the Graduate Management Admission Council (GMAC). GMAC Research Reports (Oct. 3, 2005) published the results of a check of MBA alumni. Of the African Americans who responded to the check, 209 reported their employment status after scaling as tone-employed or a small business proprietor. Of the whites who responded to the check, 356 reported their employment status after scaling as tone-employed or a small business proprietor. Use this information to answer the exploration question.

Question: The speed with which consumers decide to purchase a product was investigated in the Journal of Consumer Research (August 2011). The researchers theorized that consumers with last names that begin with letters later in the alphabet will tend to acquire items faster than those whose last names begin with letters earlier in the alphabet—called the last name effect. MBA students were offered free tickets to an event for which there was a limitedsupply of tickets. The first letter of the last name of those who responded to an email offer in time to receive the tickets was noted as well as the response time (measured in minutes). The researchers compared the response times for two groups of MBA students: (1) those with last names beginning with one of the first nine letters of the alphabet and (2) those with last names beginning with one of the last nine letters of the alphabet. Summary statistics for the two groups are provided in the table.

First 9

Letters: A–I

Last 9

Letters: R–Z

Sample size

25

25

Mean response time (minutes)

25.08

19.38

Standard deviation (minutes)

10.41

7.12

Source: Based on K. A. Carlson and J. M. Conrad, “The Last Name Effect: How Last Name Influences Acquisition Timing,” Journal of Consumer Research, Vol. 38, No. 2, August 2011.

a. Construct a 95% confidence interval for the difference between the true mean response times for MBA students in the two groups.

b. Based on the interval, part a, which group has the shorter mean response time? Does this result support the researchers’ last name effect theory? Explain.

A random sample of size n = 121 yielded p^ = .88.

a. Is the sample size large enough to use the methods of this section to construct a confidence interval for p? Explain.

b. Construct a 90% confidence interval for p.

c. What assumption is necessary to ensure the validity of this confidence interval?

Gouges on a spindle. A tool-and-die machine shop produces extremely high-tolerance spindles. The spindles are 18-inch slender rods used in a variety of military equipment. A piece of equipment used in the manufacture of the spindles malfunctions on occasion and places a single gouge somewhere on the spindle. However, if the spindle can be cut so that it has 14 consecutive inches without a gouge, then the spindle can be salvaged for other purposes. Assuming that the location of the gouge along the spindle is random, what is the probability that a defective spindle can be salvaged?

Independent random samples from two populations with standard deviations σ1=2andσ2=8, respectively, are selected. The sample sizes and the sample means are recorded in the following table:

Sample 1

Sample 2

n1=58x¯1=17.5

n2=62x¯2=16.23

a. Calculate the standard error of the sampling distribution for Sample 1.

b. Calculate the standard error of the sampling distribution for Sample 2.

c. Suppose you were to calculate the difference between the sample means (x1x2). Find the mean and standard error of the sampling distribution (x1x2).

d. Will the statistic (x1x2) be normally distributed?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free