Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

4.111 Personnel dexterity tests. Personnel tests are designed to test a job applicant’s cognitive and/or physical abilities. The Wonderlic IQ test is an example of the former; the Purdue Pegboard speed test involving the arrangement of pegs on a peg board is an example of the latter. A particular

dexterity test is administered nationwide by a private testing service. It is known that for all tests administered last year, the distribution of scores was approximately normal with mean 75 and standard deviation 7.5.

a. A particular employer requires job candidates to score at least 80 on the dexterity test. Approximately what percentage of the test scores during the past year exceeded 80?

b. The testing service reported to a particular employer that one of its job candidate’s scores fell at the 98th percentile of the distribution (i.e., approximately 98% of the scores were lower than the candidate’s, and only 2%were higher). What was the candidate’s score?

Short Answer

Expert verified

a.The percentage of the test scores during the past year exceeding 80 is 25.25%

b. The 98th percentile score of the student is 90.405

Step by step solution

01

Given information

A particular dexterity test is administered nationwide by a private testing service. It is known that for all tests administered last year, the distribution of scores was approximately normal with mean 75 and standard deviation 7.5.

02

Calculating probability

a.

Let x be the random variable to represent the score of the test.

The random variable x follows a normal distribution with mean 75 and standard deviation 7.5

x~N(75,7.5)P(x>80)=1-P(x80)=1-Px-757.580.757.5=1-P(z0.666667)=1-747507=0.2524930.2525

So, the percentage of the test scores during the past year exceeding 80 is 25.25%

03

Calculating percentile score

Let the score of the candidate be p then,

P(xp)=0.98Px-757.5p-757.5=0.98Pzp-757.5=0.98Φp-757.5=0.98p-757.5=Φ-1(0.98)p-757.5=2.054p=75+2.054×7.5p=90.405

So, the 98th percentile score of student is 90.405

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The data for a random sample of 10 paired observations is shown below.

PairSample from Population 1

(Observation 1)

Sample from Population 2 (Observation 2)
12345678910
19253152493459471751
24273653553466512055

a. If you wish to test whether these data are sufficient to indicate that the mean for population 2 is larger than that for population 1, what are the appropriate null and alternative hypotheses? Define any symbols you use.

b. Conduct the test, part a, usingα=.10.

c. Find a 90%confidence interval for μd. Interpret this result.

d. What assumptions are necessary to ensure the validity of this analysis?

Question: Is caffeine addictive? Does the caffeine in coffee, tea, and cola induce an addiction similar to that induced by alcohol, tobacco, heroin, and cocaine? In an attempt to answer this question, researchers at Johns Hopkins University examined 27 caffeine drinkers and found 25 who displayed some type of withdrawal symptoms when abstaining from caffeine. [Note: The 27 caffeine drinkers volunteered for the study.] Furthermore, of 11 caffeine drinkers who were diagnosed as caffeine dependent, 8 displayed dramatic withdrawal symptoms (including impairment in normal functioning) when they consumed a caffeine-free diet in a controlled setting. The National Coffee Association claimed, however, that the study group was too small to draw conclusions. Is the sample large enough to estimate the true proportion of caffeine drinkers who are caffeine dependent to within .05 of the true value with 99% confidence? Explain.

Product failure behavior. An article in Hotwire (December 2002) discussed the length of time till the failure of a product produced at Hewlett Packard. At the end of the product’s lifetime, the time till failure is modeled using an exponential distribution with a mean of 500 thousand hours. In reliability jargon, this is known as the “wear-out” distribution for the product. During its normal (useful) life, assume the product’s time till failure is uniformly distributed over the range of 100 thousand to 1 million hours.

a. At the end of the product’s lifetime, find the probability that the product fails before 700 thousand hours.

b. During its normal (useful) life, find the probability that the product fails before 700 thousand hours.

c. Show that the probability of the product failing before 830 thousand hours is approximately the same for both the normal (useful) life distribution and the wear-out distribution.

Comparing taste-test rating protocols. Taste-testers of new food products are presented with several competing food samples and asked to rate the taste of each on a 9-point scale (where1="dislike extremely" and9="like extremely"). In the Journal of Sensory Studies (June 2014), food scientists compared two different taste-testing protocols. The sequential monadic (SM) method presented the samples one-at-a-time to the taster in a random order, while the rank rating (RR) method presented the samples to the taster all at once, side-by-side. Consider the following experiment (similar to the one conducted in the journal): 50 consumers of apricot jelly were asked to taste test five different varieties. Half the testers used the SM protocol and half used the RR protocol during testing. In a second experiment, 50 consumers of cheese were asked to taste-test four different varieties. Again, half the testers used the SM protocol and half used the RR protocol during testing. For each product (apricot jelly and cheese), the mean taste scores of the two protocols (SM and RR) were compared. The results are shown in the accompanying tables.

a. Consider the five varieties of apricot jelly. Identify the varieties for which you can conclude that "the mean taste scores of the two protocols (SM and RR) differ significantly atα=.05."

b. Consider the four varieties of cheese. Identify the varieties for which you can conclude that "the mean taste scores of the two protocols (SM and RR) differ significantly atα=.05."

c. Explain why the taste-test scores do not need to be normally distributed for the inferences, parts a and b, to be valid.

Forensic analysis of JFK assassination bullets. Following theassassination of President John F. Kennedy (JFK) in 1963, the House Select Committee on Assassinations (HSCA) conducted an official government investigation. The HSCA concluded that although there was a probable conspiracy involving at least one shooter in addition to Lee Harvey Oswald, the additional shooter missed all limousine occupants. A recent analysis of assassination bullet fragments, reported in the Annals of Applied Statistics(Vol. 1, 2007), contradicted these findings, concluding that the evidence used by the HSCA to rule out a second assassin is fundamentally flawed. It is well documented that at least two different bullets were the source of bullet fragments found after the assassination. Let E= {bullet evidence used by the HSCA}, T= {two bullets used in the assassination}, and= {more than two bullets used in the assassination}. Given the evidence (E), which is more likely to have occurred— two bullets used (T) or more than two bullets used ?

a. The researchers demonstrated that the ratio,P(T\E)/P(Tc\E), is less than 1. Explain why this result supports the theory of more than two bullets used in the assassination of JFK.

b. To obtain the result, part a, the researchers first showed that P(T\E)P(Tc\E)=[PE\T.PT][PE\Tc.PTc]Demonstrate this equality using Bayes’s Rule.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free