Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Salmonella in yield. Salmonella infection is the most common bacterial foodborne illness in the United States. How current is Salmonella in yield grown in the major agricultural region of Monterey, California? Experimenters from the U.S. Department of Agriculture (USDA) conducted tests for Salmonella in yield grown in the region and published their results in Applied and Environmental Microbiology (April 2011). In a sample of 252 societies attained from water used to wash the region, 18 tested positive for Salmonella. In an independent sample of 476 societies attained from the region's wildlife (e.g., catcalls), 20 tested positive for Salmonella. Is this sufficient substantiation for the USDA to state that the frequency of Salmonella in the region's water differs from the frequency of Salmonella in the region's wildlife? Use a = .01 to make your decision

Short Answer

Expert verified

There is no evidence to reject the null hypothesis () at α= 0.01.

Step by step solution

01

Check the Null hypothesis and Alternative hypothesis

Let p1 be the proportion of Salmonella in the region's water and p2 be the proportion of Salmonella in the region's wildlife. The hypotheses are given below:

Null hypothesis:

H₁: P1 – P2 = 0

There is no evidence that the prevalence of Salmonella in the region's water differs from the prevalence of Salmonella in the region's wildlife.

Alternative hypothesis: P1 – P2 ≠ 0

There is evidence that the prevalence of Salmonella in the region's water differs from the prevalence of Salmonella in the wildlife.

02

Calculate the critical value

calculate the critical value.

Let the confidence position be0.99.

1-α = 0.99

α = 1-0.99

= 0.01

= 0.005

From Excursus Table II, the value of za2is given below.

za2=z0.005=2.58

=2.58

So, the value of za2is 2.58.

03

Rejection region

Rejection region:

If Z > za2(= 2.58), then reject the null hypothesis.

its Z > za2(= -2.58), then reject the null hypothesis.

04

Calculate the value of P1and P2

Calculate the value of p1-
andp2-

05

Calculate the value of P1

Consider α = 0.10, n1= 476, x1= 18, and x2= 20.

The value of P-1is obtained as shown below.

P-1=x1n1=18252=0.0714

06

Calculate the value of P2

The value of P-2is obtained as shown below.

P-2=x2n2=20252=0.0420

07

calculate the value of p

The value of P-is obtained below.

P-=x1+x2n1+n2=18+20252+476=0.0522

08

Calculate the test statistic

Calculate the test statistic (z).

Z=P-1-P-2p-q-1n+1nz=0.0714-0.04200.0522(1-0.06522)1252+1456=0.02940.0174=1.69

09

Conclusion

The critical value is 2.58, and the value of z is 1.69.

Here, the value of z is lesser than the value of Za2.

That is, z (= 1.69) < Za2(=2.58).

So, by the rejection rule, don't reject the null hypothesis (H0)

Interpretation

Thus, it can be concluded that there is no evidence to reject the null hypothesis (H0) at α = 0.01.

Hence, there is no evidence that the prevalence of Salmonella in the region's water differs from the prevalence of Salmonella in the region's wildlife.

From the above steps, there is no evidence to reject the null hypothesis at α = 0.01.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Solar energy generation along highways. Refer to the International Journal of Energy and Environmental Engineering (December 2013) study of solar energy generation along highways, Exercise 8.39 (p. 481). Recall that the researchers compared the mean monthly amount of solar energy generated by east-west– and north-south– oriented solar panels using a matched-pairs experiment. However, a small sample of only five months was used for the analysis. How many more months would need to be selected to estimate the difference in means to within 25 kilowatt-hours with a 90% confidence interval? Use the information provided in the SOLAR file to find an estimate of the standard error required to carry out the calculation

Studies have established that rudeness in the workplace can lead to retaliatory and counterproductive behaviour. However, there has been little research on how rude behaviours influence a victim’s task performance. Such a study was conducted, and the results were published in the Academy of Management Journal (Oct. 2007). College students enrolled in a management course were randomly assigned to two experimental conditions: rudeness condition (students) and control group (students). Each student was asked to write down as many uses for a brick as possible in minutes. For those students in the rudeness condition, the facilitator displayed rudeness by generally berating students for being irresponsible and unprofessional (due to a late-arriving confederate). No comments were made about the late-arriving confederate to students in the control group. The number of different uses for brick was recorded for each student and is shown below. Conduct a statistical analysis (at α=0.01) to determine if the true mean performance level for students in the rudeness condition is lower than the actual mean performance level for students in the control group.

The data is given below

Control Group:

124516217201920191023160491317130212117311119912185213015421211101311361013161228191230


Rudeness Condition:

411181196511912757311191110789107114135478381591610071513921310

Forensic analysis of JFK assassination bullets. Following theassassination of President John F. Kennedy (JFK) in 1963, the House Select Committee on Assassinations (HSCA) conducted an official government investigation. The HSCA concluded that although there was a probable conspiracy involving at least one shooter in addition to Lee Harvey Oswald, the additional shooter missed all limousine occupants. A recent analysis of assassination bullet fragments, reported in the Annals of Applied Statistics(Vol. 1, 2007), contradicted these findings, concluding that the evidence used by the HSCA to rule out a second assassin is fundamentally flawed. It is well documented that at least two different bullets were the source of bullet fragments found after the assassination. Let E= {bullet evidence used by the HSCA}, T= {two bullets used in the assassination}, and= {more than two bullets used in the assassination}. Given the evidence (E), which is more likely to have occurred— two bullets used (T) or more than two bullets used ?

a. The researchers demonstrated that the ratio,P(T\E)/P(Tc\E), is less than 1. Explain why this result supports the theory of more than two bullets used in the assassination of JFK.

b. To obtain the result, part a, the researchers first showed that P(T\E)P(Tc\E)=[PE\T.PT][PE\Tc.PTc]Demonstrate this equality using Bayes’s Rule.

Comparing taste-test rating protocols. Taste-testers of new food products are presented with several competing food samples and asked to rate the taste of each on a 9-point scale (where1="dislike extremely" and9="like extremely"). In the Journal of Sensory Studies (June 2014), food scientists compared two different taste-testing protocols. The sequential monadic (SM) method presented the samples one-at-a-time to the taster in a random order, while the rank rating (RR) method presented the samples to the taster all at once, side-by-side. Consider the following experiment (similar to the one conducted in the journal): 50 consumers of apricot jelly were asked to taste test five different varieties. Half the testers used the SM protocol and half used the RR protocol during testing. In a second experiment, 50 consumers of cheese were asked to taste-test four different varieties. Again, half the testers used the SM protocol and half used the RR protocol during testing. For each product (apricot jelly and cheese), the mean taste scores of the two protocols (SM and RR) were compared. The results are shown in the accompanying tables.

a. Consider the five varieties of apricot jelly. Identify the varieties for which you can conclude that "the mean taste scores of the two protocols (SM and RR) differ significantly atα=.05."

b. Consider the four varieties of cheese. Identify the varieties for which you can conclude that "the mean taste scores of the two protocols (SM and RR) differ significantly atα=.05."

c. Explain why the taste-test scores do not need to be normally distributed for the inferences, parts a and b, to be valid.

Find the numerical value of

a.6! b.(109)c. (101)d.(63)e.0!

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free