Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(Question) Web Check response rates. Response rates to Web checks are generally low, incompletely due to druggies starting but not. I am finishing the check. Survey Methodology (December 2013) delved into the factors that impact response rates. In a designed study, Web druggies were directed to. Share in one of several checks with different formats. For illustration, one format employed a welcome screen with a white background, and another format employed a welcome screen with a red background. The “break-off rates,” i.e., the proportion of tried druggies who break off the check before completing all questions, for the two formats are handed in the table.

White Welcome screen

Red Welcome screen

Number of Web users

198

183

The number who break off the survey

49

37

Break-off rate

.258

.202

Source: R. Haer and N. Meidert, “Does the First Impression Count? Examining the Effect of the Welcome Screen Design on the Response Rate,” Survey Methodology, Vol. 39, No. 2, December 2013 (Table 4.1).

a. Corroborate the values of the break-off rates shown in the table.

b. The experimenters theorize that the true break-off rate for Web druggies of the red hello screen will be lower than the corresponding break-off rate for the white hello screen. Give the null and indispensable suppositions for testing this proposition.

c. Cipher the test statistic for the test.

d. Find the p- the value of the test.

e. Make the applicable conclusion using α = .10.

Short Answer

Expert verified

A test statistic assesses the level of agreement among a data set and the null hypothesis. Its recorded values ranged randomly from one random test to another.

Step by step solution

01

(a) Verify the values of the break-off rates shown in the table

Consider Xred= 49 and need= 190.

The value of the break-off rate for the white welcome screen is,

Pred=xwhitenwhite=49130=0.258

Consider xred = 37 and nred= 183.

The value of the break-off rate for the red welcome screen is,

Pred=xwhitenwhite=37183=0.202

The value of the break-off rates shown in the table is verified.

02

State the hypotheses

Null hypothesis:

H0 = Pwhite - Pred= 0

The real break-off rate for Internet users who see the red welcome display will be smaller than the actual break-off percentage for Internet users who see the white welcome display.

Alternative hypothesis:

H0: White-Pred > 0

The real break-off rate for Internet users who see the red welcome display will be smaller than the actual break-off percentage for Internet users who see the white welcome display.

03

Use MINITAB to obtain the test statistic

MINITAB procedure:

Step 1: Choose Stat > Basic Statistics > 2 Proportions.

Step 2: Choose Summarized data.

Step 3: In the First sample, enter Trials as 190 and Events as 49.

Step 4 in the Second sample, enter Trials as 183 and Events as 37.

Step 5: Check Perform hypothesis test. In Hypothesized proportion, enter 0.

Step 6: Check Options, enter Confidence level as 90.0

Step 7: Choose greater than in alternative

Step 8: Click OK in all dialogue boxes.

04

MINITAB output

Test and CI for Two Proportions

Difference = p (1) - p (2)

Estimate for difference: 0.0557089

90% lower bound for difference: 0.0000130753

Test for difference = 0 (vs > 0) : z = 1.28 P-Value = 0.101

Fisher's exact test - P-Value 0.124

From the MINITAB output, the value of the test statistic is 128.

05

Value of p

Finds the p-value by using MINITAB.

From the MINITAB output in step-4, the value is 0.101.

06

Rejection rule and conclusion

Rejection rule:

If p-value < α . then reject the null hypothesis.

Conclusion:

Here, the p-value is greater than the level of significance.

That is p-value (-0,101) > α(-0,05)

Therefore, the null hypothesis is not rejected at α = 0.05

It can be concluded that the actual break-off rate for Web users of the red welcome screen is hot lower than the corresponding true break-off rate for the white welcome screen.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

4.134 Refer to Exercise 4.133. Find the following probabilities:

a.P(20x30)b.P(20<x30)c.P(x30)d.P(x45)e.(x40)f.(x<40)g.P(15x35)h.P(21.5x31.5)

Sanitarium administration of malaria cases. One of the most sedate health challenges in India is malaria. Accordingly, the Indian sanitarium director's must-have—the coffers to treat the high volume of admitted malaria cases. A study published in the National Journal of Community Medicine (Vol. 1, 2010) delved into whether the malaria admission rate is more advanced in months than in others. In a sample of 192 sanitarium cases admitted in January, 32 were treated for malaria.

In an independent sample of 403 cases admitted in May (4 months latterly), 34 were treated for malaria.

a. Describe the two populations of stake in this study.

b. Give a point estimate of the contrast in the malaria admission rates in January and May.

c. Find a 90% confidence interval for the contrast in the malaria admission rates in January and May.

d. Based on the interval, part c, can you conclude that contrast exists in the authentic malaria admission rates in January and May? Simplify.

Shared leadership in airplane crews. Refer to the Human Factors (March 2014) study of shared leadership by the cockpit and cabin crews of a commercial airplane, Exercise 8.14 (p. 466). Recall that each crew was rated as working either successfully or unsuccessfully as a team. Then, during a simulated flight, the number of leadership functions exhibited per minute was determined for each individual crew member. One objective was to compare the mean leadership scores for successful and unsuccessful teams. How many crew members would need to be sampled from successful and unsuccessful teams to estimate the difference in means to within .05 with 99% confidence? Assume you will sample twice as many members from successful teams as from unsuccessful teams. Also, assume that the variance of the leadership scores for both groups is approximately .04.

Non-destructive evaluation. Non-destructive evaluation(NDE) describes methods that quantitatively characterize materials, tissues, and structures by non-invasive means, such as X-ray computed tomography, ultrasonic, and acoustic emission. Recently, NDE was used to detect defects in steel castings (JOM,May 2005). Assume that the probability that NDE detects a “hit” (i.e., predicts a defect in a steel casting) when, in fact, a defect exists is .97. (This is often called the probability of detection.) Also assume that the probability that NDE detects a hit when, in fact, no defect exists is .005. (This is called the probability of a false call.) Past experience has shown a defect occurs once in every 100 steel castings. If NDE detects a hit for a particular steel casting, what is the probability that an actual defect exists?

The “winner’s curse” in transaction bidding. In transaction bidding, the “winner’s curse” is the miracle of the winning (or loftiest) shot price being above the anticipated value of the item being auctioned. The Review of Economics and Statistics (Aug. 2001) published a study on whether shot experience impacts the liability of the winner’s curse being. Two groups of a stab in a sealed-shot transaction were compared (1)super-experienced stab and (2) less educated stab. In the super-experienced group, 29 of 189 winning flings were above the item’s anticipated value; 32 of 149 winning flings were above the item’s anticipated value in the less-educated group.

  1. Find an estimate of p1, the true proportion of super educated stab who fell prey to the winner’s curse
  2. Find an estimate of p2, the true proportion of less-educated stab who fell prey to the winner’s curse.
  3. Construct a 90 confidence interval for p1-p2.
  4. d. Give a practical interpretation of the confidence interval, part c. Make a statement about whether shot experience impacts the liability of the winner’s curse being.
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free