Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Is honey a cough remedy? Refer to the Archives of Pediatrics and Adolescent Medicine (Dec. 2007) study of honey as a children’s cough remedy, Exercise 8.23 (p. 470). The data (cough improvement scores) for the 33 children in the DM dosage group and the 35 children in the honey dosage group are reproduced in the table below. In Exercise 8.23, you used a comparison of two means to determine whether “honey may be a preferable treatment for the cough and sleep difficulty associated with childhood upper respiratory tract infection.” The researchers also want to know if the variability in coughing improvement scores differs for the two groups. Conduct the appropriate analysis, using α=0.10

Short Answer

Expert verified

we reject the null hypothesis.

Step by step solution

01

Specifying the hypothesis

Let μ1 be the mean improvement for children receiving the honey dosage.

Let μ2 be the mean improvement for children receiving the DM dosage.

The null hypothesis are given by

H0:μ1-μ2=0

The alternative hypothesis are given by

Ha:μ1-μ2>0

02

Compute mean and standard deviation

The mean for first group is given by

x¯1=i=1nXin=37535=10.71

The mean for second group is given by

x¯2=i=1nXin=27533=8.33

The sd for first group is given by

sd=i=1n(Xi-X¯)2n-1=277.143534=8.1512=2.85

The sd for second group is given by

sd=i=1n(Xi-X¯)2n-1=339.333732=10.60=3.255

03

Test statistic

The test statistic is computed as

z=x¯1-x¯2-0σ12n1+σ22n2=10.71-8.332.85235+3.255233=2.380.232+0.321=2.38.7436=3.200

04

Conclusion

For α=0.10

Rejection region for right tailed test is given by

zα=z0.10=1.282

The test statistic is greater than tabulated value. i.e. the calculated value falls in rejection region.

Therefore, we reject the null hypothesis.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Optimal goal target in soccer. When attempting to score a goal in soccer, where should you aim your shot? Should you aim for a goalpost (as some soccer coaches teach), the middle of the goal, or some other target? To answer these questions, Chance (Fall 2009) utilized the normal probability distribution. Suppose the accuracy x of a professional soccer player’s shots follows a normal distribution with a mean of 0 feet and a standard deviation of 3 feet. (For example, if the player hits his target,x=0; if he misses his target 2 feet to the right, x=2; and if he misses 1 foot to the left,x=-1.) Now, a regulation soccer goal is 24 feet wide. Assume that a goalkeeper will stop (save) all shots within 9 feet of where he is standing; all other shots on goal will score. Consider a goalkeeper who stands in the middle of the goal.

a. If the player aims for the right goalpost, what is the probability that he will score?

b. If the player aims for the center of the goal, what is the probability that he will score?

c. If the player aims for halfway between the right goal post and the outer limit of the goalkeeper’s reach, what is the probability that he will score?

Ages of self-employed immigrants. Is self-employment for immigrant workers a faster route to economic advancement in the country? This was one of the questions studied in research published in the International Journal of Manpower (Vol. 32, 2011). One aspect of the study involved comparing the ages of self-employed and wage-earning immigrants. The researcher found that in Sweden, native wage earners tend to be younger than self-employed natives. However, immigrant wage earners tend to be older than self-employed immigrants. This inference was based on the table's summary statistics for male Swedish immigrants.

Self-employed immigrants

Wage-earning immigrants

Sample Size

870

84,875

Mean

44.88

46.79

Source: Based on L. Andersson, "Occupational Choice and Returns to Self-Employment Among Immigrants," International Journal of Manpower, Vol. 32, No. 8, 2011 (Table I).

a. Based on the information given, why is it impossible to provide a measure of reliability for the inference "Self-employed immigrants are younger, on average, than wage-earning immigrants in Sweden"?

b. What information do you need to measure reliability for the inference, part a?

c. Give a value of the test statistic that would conclude that the true mean age of self-employed immigrants is less than the true mean age of wage-earning immigrants if you are willing to risk a Type I error rate of .01.

d. Assume that s, the standard deviation of the ages is the same for both self-employed and wage-earning immigrants. Give an estimate of s that would lead you to conclude that the true mean age of self-employed immigrants is less than the true mean age of wage-earning immigrants using α=0.01 .

e. Is the true value of s likely to be larger or smaller than the one you calculated in part d?

Non-destructive evaluation. Non-destructive evaluation(NDE) describes methods that quantitatively characterize materials, tissues, and structures by non-invasive means, such as X-ray computed tomography, ultrasonic, and acoustic emission. Recently, NDE was used to detect defects in steel castings (JOM,May 2005). Assume that the probability that NDE detects a “hit” (i.e., predicts a defect in a steel casting) when, in fact, a defect exists is .97. (This is often called the probability of detection.) Also assume that the probability that NDE detects a hit when, in fact, no defect exists is .005. (This is called the probability of a false call.) Past experience has shown a defect occurs once in every 100 steel castings. If NDE detects a hit for a particular steel casting, what is the probability that an actual defect exists?

Given that x is a random variable for which a Poisson probability distribution provides a good approximation, use statistical software to find the following:

a.P(x2) when λ=1

b.P(x2) when λ=2

c.P(x2) when λ=3

d. What happens to the probability of the event {x2} as λ it increases from 1 to 3? Is this intuitively reasonable?

Angioplasty’s benefits are challenged. Further, more than 1 million heart cases each time suffer an angioplasty. The benefits of an angioplasty were challenged in a study of cases (2007 Annual Conference of the American. College of Cardiology, New Orleans). All the cases had substantial blockage of the highways but were medically stable. All were treated with drugs similar to aspirin and beta-blockers. Still, half the cases were aimlessly assigned to get an angioplasty, and half were not. After five years, the experimenter planted 211 of the. Cases in the angioplasty group had posterior heart attacks compared with 202 cases in the drug-only group. Do you agree with the study’s conclusion? “There was no significant difference in the rate of heart attacks for the two groups”? Support your answer with a 95-confidence interval.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free