Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Shopping vehicle and judgment. Refer to the Journal ofMarketing Research (December 2011) study of shopping cart design, Exercise 2.85 (p. 112). Recall that design engineers want to know whether the mean choice of the vice-over-virtue score is higher when a consumer’s arm is flexed (as when carrying a shopping basket) than when the consumer’s arm is extended (as when pushing a shopping cart). The average choice score for the n1 = 11 consumers with a flexed arm was x¯1= 59, while the average for the n2 = 11
Consumers with an extended arm was x¯2= 43. In which scenario is the assumption required for a t-test to compare means more likely to be violated, S1= 4 and S2= 2, or, S1= 10 and S2 = 15? Explain.

Short Answer

Expert verified

The answer can be reduced from the following steps.

Step by step solution

01

Given information

Referring to Exercises 8.8 and 8.9, there is no difference between the n1 and n2 consumers' average scores. The sample mean of consumers with a flexed arm and extended arm was different, that isx¯1= 59,x¯2= 43. The standard deviation in consumers with a flexed arm and consumers with an extended are dissimilar.

02

Explaining the t-test

A statistical test called a t-test is employed to contrast the means of two clusters. It is frequently employed in hypothesis testing to establish whether one procedure or treatment affects the target group or even if two groups vary.

The two different kinds of t-tests are as follows.

  • Use a two-tailed t-test if the only thing that matters is how the two populations vary from each other.
  • Use a one-tailed t-test to determine if one population mean is higher or lower compared to the other.
03

Validation of the t-test's premise

t-test hypotheses are as follows

H0:μ1=μ2H1:μ1μ2

The application of test statistics is as follows.

t=x¯1-x¯2-μ1-μ2S12n1+S22n2

Following is test statistics with the degree of freedom.

df=n1-1and df=n2-1are similar because of the mean of consumers with a flexed arm and extended arm are similar. As H0:μ1=μ2and n1=n2, reject the claim that the value of t is higher. Therefore, the hypothesis will most likely be rejected if S1and S2 are lower.

Case-1:If S1=4and S2=2

The test statistics is as follows.

t=59-434211+2211t=162011t=1158t=11.866

Case-2:If S1=10and S2=15

t=59-4310211+15211t=1132516t=2.946

The p-value for case 1 will be higher than case 2 as t increases. In case 1, it is more likely that the hypotheses will be rejected.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Angioplasty’s benefits are challenged. Further, more than 1 million heart cases each time suffer an angioplasty. The benefits of an angioplasty were challenged in a study of cases (2007 Annual Conference of the American. College of Cardiology, New Orleans). All the cases had substantial blockage of the highways but were medically stable. All were treated with drugs similar to aspirin and beta-blockers. Still, half the cases were aimlessly assigned to get an angioplasty, and half were not. After five years, the experimenter planted 211 of the. Cases in the angioplasty group had posterior heart attacks compared with 202 cases in the drug-only group. Do you agree with the study’s conclusion? “There was no significant difference in the rate of heart attacks for the two groups”? Support your answer with a 95-confidence interval.

Ages of self-employed immigrants. Is self-employment for immigrant workers a faster route to economic advancement in the country? This was one of the questions studied in research published in the International Journal of Manpower (Vol. 32, 2011). One aspect of the study involved comparing the ages of self-employed and wage-earning immigrants. The researcher found that in Sweden, native wage earners tend to be younger than self-employed natives. However, immigrant wage earners tend to be older than self-employed immigrants. This inference was based on the table's summary statistics for male Swedish immigrants.

Self-employed immigrants

Wage-earning immigrants

Sample Size

870

84,875

Mean

44.88

46.79

Source: Based on L. Andersson, "Occupational Choice and Returns to Self-Employment Among Immigrants," International Journal of Manpower, Vol. 32, No. 8, 2011 (Table I).

a. Based on the information given, why is it impossible to provide a measure of reliability for the inference "Self-employed immigrants are younger, on average, than wage-earning immigrants in Sweden"?

b. What information do you need to measure reliability for the inference, part a?

c. Give a value of the test statistic that would conclude that the true mean age of self-employed immigrants is less than the true mean age of wage-earning immigrants if you are willing to risk a Type I error rate of .01.

d. Assume that s, the standard deviation of the ages is the same for both self-employed and wage-earning immigrants. Give an estimate of s that would lead you to conclude that the true mean age of self-employed immigrants is less than the true mean age of wage-earning immigrants using α=0.01 .

e. Is the true value of s likely to be larger or smaller than the one you calculated in part d?

Traffic sign maintenance. Refer to the Journal of Transportation Engineering (June 2013) study of traffic sign maintenance in North Carolina, Exercise 8.54 (p. 489). Recall that the proportion of signs on NCDOT-maintained roads that fail minimum requirements was compared to the corresponding proportion for signs on county-owned roads. How many signs should be sampled from each maintainer to estimate the difference between the proportions to within .03 using a 90% confidence interval? Assume the same number of signs will be sampled from NCDOT-maintained roads and county-owned roads

In a random sample of 250 people from a city, 148 of them favor apples over other fruits.

a. Use a 90% confidence interval to estimate the true proportion p of people in the population who favor apples over other fruits.

b. How large a sample would be needed to estimate p to be within .15 with 90% confidence?

Suppose you want to estimate the difference between two population means correct to within 1.8 with a 95% confidence interval. If prior information suggests that the population variances are approximately equal to σ12=σ22=14 and you want to select independent random samples of equal size from the populations, how large should the sample sizes n1, and n2, be?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free