Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If nothing is known about p, .5 can be substituted for p in the sample size formula for a population proportion. But when this is done, the resulting sample size may be larger than needed. Under what circumstances will be using p = .5 in the sample size formula yield a sample size larger than needed to construct a confidence interval for p with a specified bound and a specified confidence level?

Short Answer

Expert verified

Whenever p is greater than 0.5

Step by step solution

01

Given information

If nothing is known regarding p, 0.5 can be used in the sample size formula for a percentage of the population instead of p. However, the final sampling size may be greater than necessary if this is done.

02

Explanation

When p = 0.5, the sample size required is at its greatest.

As a result, if p is equivalent to 0.5, p=0.5, The sample size calculation will provide the needed sample size. However, if p is more than 0.5, use p=0.5. The sample size formula will provide a sample size more than what is needed to generate a confidence interval for p with a particular limit as well as a level of confidence.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Shopping on Black Friday. The day after Thanksgiving— called Black Friday—is one of the largest shopping days in the United States. Winthrop University researchers conducted interviews with a sample of 38 women shopping on Black Friday to gauge their shopping habits and reported the results in the International Journal of Retail and Distribution Management (Vol. 39, 2011). One question was, “How many hours do you usually spend shopping on Black Friday?” Data for the 38 shoppers are listed in the accompanying table.

a. Describe the population of interest to the researchers.

b. What is the quantitative variable of interest to the researchers?

c. Use the information in the table to estimate the population mean number of hours spent shopping on Black Friday with a 95% confidence interval.

d. Give a practical interpretation of the interval.

e. A retail store advertises that the true mean number of hours spent shopping on Black Friday is 5.5 hours. Can the store be sued for false advertising? Explain.

Minority ownership of franchises. According to a 2011 report for IFA Educational Foundation, 20.5% of all franchised businesses in the United States are minority owned. (This information is based on the U.S. Census Bureau’s survey of 27 million business owners.) Suppose that you obtain a sample of 100 franchised businesses located in Mississippi and find that 15 are owned by minorities. Does this result lead you to conclude that the percentage of minority-owned franchises in Mississippi is less than the national value of 20.5%? Explain.

Question: Let t0 be a specific value of t. Use Table III in Appendix D to find t0 values such that the following statements are true.

a.P(tt0)=.025wheredf=11b.P(tt0)=.01wheredf=9c.P(tt0)=.005wheredf=6d.P(tt0)=.05wheredf=18

Wear-out of used display panels. Refer to Exercise 4.126 (p. 270) and the study of the wear-out failure time of used colored display panels purchased by an outlet store. Recall that prior to acquisition, the panels had been used for about one-third of their expected lifetimes. The failure times (in years) for a sample of 50 used panels are reproduced in the table. An SPSS printout of the analysis is shown below.

a. Locate a 95% confidence interval for the true mean failure time of used colored display panels on the printout.

b. Give a practical interpretation of the interval, part a.

c. In the repeated sampling of the population of used colored display panels, where a 95% confidence interval for the mean failure time is computed for each sample, what proportion of all the confidence intervals generated will capture the true mean failure time?

Customers who participate in a store’s free loyalty card program save money on their purchases but allow the store to keep track of their shopping habits and potentially sell these data to third parties. A Pew Internet & American Life Project Survey (January 2016) revealed that half (225) of a random sample of 250 U.S. adults would agree to participate in a store loyalty card program, despite the potential for information sharing.

a. Estimate the true proportion of all U.S. adults who would agree to participate in a store loyalty card program, despite the potential for information sharing.

b. Form a 90% confidence interval around the estimate, part a.

c. Provide a practical interpretation of the confidence interval, part b. Your answer should begin with, “We are 90% confident . . .”

d. Explain the theoretical meaning of the phrase, “We are 90% confident.”

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free