Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A sampling dispute goes to court. Sampling of Medicare and Medicaid claims by the federal and state agencies who administer those programs has become common practice to determine whether providers of those services are submitting valid claims. (See the Statistics in Action for this chapter.) The reliability of inferences based on those samples depends on the methodology used to collect the sample of claims. Consider estimating the true proportion, p, of the population of claims that are invalid. (Invalid claims should not have been reimbursed by the agency.) Of course, to estimate a binomial parameter, p, within a given level of precision we use the formula provided in Section 6.5 to determine the necessary sample size. In a recent actual case, the statistician determined a sample size large enough to ensure that the bound on the error of the estimate would not exceed 0.05, using a 95% confidence interval. He did so by assuming that the true error rate was, which, as discussed in Section 6.5, provides the maximum sample size needed to achieve the desired bound on the error.

a. Determine the sample size necessary to estimate p to within .05 of the true value using a 95% confidence interval.

b. After the sample was selected and the sampled claims were audited, it was determined that the estimated error rate was and a 95% confidence interval for p was (0.15, 0.25). Was the desired bound on the error of the estimate met?

c. An economist hired by the Medicare provider noted that, since the desired bound on the error of .05 is equal to 25% of the estimated invalid claim rate, the “true” bound on the error was .25, not .05. He argued that a significantly larger sample would be necessary to meet the “relative error” (the bound on the error divided by the error rate) goal of .05, and that the statistician’s use of the “absolute error” of .05 was inappropriate, and more sampling was required. The statistician argued that the relative error was a moving target, since it depends on the sample estimate of the invalid claim rate, which cannot be known prior to selecting the sample. He noted that if the estimated invalid claim rate turned out to be larger than .5, the relative error would then be lower than the absolute error bound. As a consequence, the case went to trial over the relative vs. absolute error dispute. Give your opinion on the matter. [Note: The Court concluded that “absolute error was the fair and accurate measure of the margin of error.” As a result, a specified absolute bound on the error continues to be the accepted method for determining the sample size necessary to provide a reliable estimate of Medicare and Medicaid providers’ claim submission error rates.]

Short Answer

Expert verified
  1. The sample size need to be analyzed to estimate the true proportion to within 0.05 with 95% confidence interval is 385.
  2. The desired bound on the error of the estimate met the sampled claims were audited.
  3. From the information, it is clear that the absolute error is better to determine the sample size when compared to the relative error, because the absolute error provides the fair and accurate measures of the margin of error when compared to the relative error.

Step by step solution

01

Given information

The statistician determined a sample size large enough to ensure that the bound on the error of the estimate would not exceed 0.05, using a 95% confidence interval. He did so by assuming that the true error rate was.

02

Computing the sample size

Consider,p=0.5

The general formula for the sample size is given below:

n=(Zα2)2(pq)(SE)2

Here, the confidence level is 0.95.

For

1-α=0.95α=0.05α2=0.025

From table, the value ofzα2 is given below:

zα2=z0.025=1.96

The sample size is obtained below:

n=1.9620.50.50.052n=0.96040.0025n=384.16n385

Thus, the sample size need to be analyzed to estimate the true proportion to within 0.05 with 95% confidence interval is 385.

03

Interpretation

b.

Yes, the desired bound on the error of the estimate met the samples claims were audited. From part a., the desired bound on the error is 0.05.

The actual bound on the error is

0.25-0.152=0.05

Hence, the desired bound on the error and the actual bound on the error are equal. Thus, the desired bound on the error of the estimate met the sampled claims were audited.

04

Opinion

c.

From the information, it is clear that the absolute error is better to determine the sample size when compared to the relative error, because the absolute error provides the fair and accurate measures of the margin of error when compared to the relative error.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Crude oil biodegradation. Refer to the Journal of Petroleum Geology (April 2010) study of the environmental factors associated with biodegradation in crude oil reservoirs, Exercise 2.29 (p. 85). One indicator of biodegradation is the level of dioxide in the water. Recall that 16 water specimens were randomly selected from various locations in a reservoir on the floor of a mine and the amount of dioxide (milligrams/liter) as well as presence of oil was determined for each specimen. These data are reproduced in the next table.

a. Estimate the true mean amount of dioxide present in water specimens that contain oil using a 95% confidence interval. Give a practical interpretation of the interval.

b. Repeat part a for water specimens that do not contain oil.

c. Based on the results, parts a and b, make an inference about biodegradation at the mine reservoir.

Accounting and Machiavellianism. Refer to the Behavioral Research in Accounting(January 2008) study ofMachiavellian traits in accountants, Exercise 6.19 (p. 341),where a Mach rating score was determined for each ina sample of accounting alumni who work as purchasingmanagers. Suppose you want to reduce the width of the95% confidence interval for the true mean Mach ratingscore of all purchasing managers you obtained in Exercise 6.19b. How many purchasing managers should be includedin the sample if you desire a sampling error of only 1.5Mach rating points? Useσ12 in your calculations.

Suppose you wish to estimate the mean of a normal population

using a 95% confidence interval, and you know from prior information thatσ21

a. To see the effect of the sample size on the width of the confidence interval, calculate the width of the confidence interval for n= 16, 25, 49, 100, and 400.

b. Plot the width as a function of sample size non graph paper. Connect the points by a smooth curve and note how the width decreases as nincreases.

Study of aircraft bird-strikes. As worldwide air traffic volume has grown over the years, the problem of airplanes striking birds and other flying wildlife has increased dramatically. The International Journal for Traffic and Transport Engineering (Vol. 3, 2013) reported on a study of aircraft bird strikes at Aminu Kano International Airport in Nigeria. During the survey period, a sample of 44 aircraft bird strikes were analyzed. The researchers found that 36 of the 44 bird strikes at the airport occurred above 100 feet. Suppose an airport air traffic controller estimates that less than 70% of aircraft bird strikes occur above 100 feet. Comment on the accuracy of this estimate. Use a 95% confidence interval to support your inference.

Preventing the production of defective items. It costs more toproduce defective items—because they must be scrappedor reworked—than it does to produce non-defective items.This simple fact suggests that manufacturers shouldensurethe quality of their products by perfecting theirproduction processes rather than through inspection of finishedproducts (Out of the Crisis,Deming, 1986). In orderto better understand a particular metal-stamping process, the manufacturer wishes to estimate the mean length of itemsproduced by the process during the past 24 hours.

a. How many parts should be sampled in order to estimatethe population means to within .1 millimetre (mm)with 90% confidence? Previous studies of this machinehave indicated that the standard deviation of lengthsproduced by the stamping operation is about 2 mm.

b. Time permits the use of a sample size no larger than100. If a 90% confidence interval for is constructedusing n= 100, will it be wider or narrower than wouldhave been obtained using the sample size determined in

part a? Explain.

c. If management requires that μbe estimated to within.1 mm and that a sample size of no more than 100 beused, what is (approximately) the maximum confidencelevel that could be attained for a confidence interval

Does that meet management's specifications?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free