Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The National Association of Realtors (NAR) reported the results of an April 2015 survey of home buyers. In a random sample of 1,971 residential properties purchased during the year, 414 were purchased as a vacation home. Five years ago, 10% of residential properties were vacation homes.

a. Do the survey results allow the NAR to conclude (at α=.01) that the percentage of all residential properties purchased for vacation homes is greater than 10%?

b. In a previous year, the NAR sent the survey questionnaire to a nationwide sample of 45,000 new home owners, of which 1,982 responded to the survey. How might this bias the results? [Note: In the most recent survey, the NAR used a more valid sampling method.

Short Answer

Expert verified

a. At a 1% significance level, we have sufficient evidence to conclude that the true percentage of all residential properties purchased for vacation homes is greater than 10%.

b. Most of the homeowners ignore the survey, resulting in non-response bias.

Step by step solution

01

Given information

According to the National Association of Realtors, out of 1,971 residential properties purchased during 2015, 414 were purchased as vacation homes.

That is

The size of the samplen=1971

The sample proportion is

p^=4141971=0.210

Where p^is the sample proportion of residential properties purchased for vacation homes.

02

Setting up the hypotheses

Here we have to test whether the true population proportion of residential properties purchased for vacation homes is greater than 10% or not.

The null and alternative hypotheses are given as

H0:p=0.10

That is, there is no statistical evidence that the true population proportion of residential properties purchased for vacation homes is greater than 10%.

And

Ha:p>0.10

That is, there is statistical evidence that the true population proportion of residential properties purchased for vacation homes is greater than 10%.

03

Calculating the test statistic value

The test statistic for testing these hypotheses is

Z=p^-pp1-pn=0.210-0.100.101-0.101971=0.110.00004566=16.28

04

Calculating the critical value

Here

α:The level of significance

α=.01

Using the standard normal table, the critical value at the 1% significance level is 2.326

05

Decision Rule

We can see that

Z=16.28>2.326

Hence, we reject the null hypothesis.

06

Conclusion

At a 1% significance level, we have sufficient evidence to conclude that the true percentage of all residential properties purchased for vacation homes is greater than 10%.

07

Bias of the survey

Since NAR randomly sent the survey questionnaire to the 45,000 new homeowners, only 1,982 responded. Approximately 95% of owners just ignored the survey. This is called the non-response bias in a statistical term.

Hence, the survey result cannot be reliable and does not represent the true proportion of residential properties purchased for vacation homes.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Radon exposure in Egyptian tombs. Refer to the Radiation Protection Dosimetry (December 2010) study of radon exposure in Egyptian tombs, Exercise 6.30 (p. 349). The radon levels—measured in becquerels per cubic meter (\({{Bq} \mathord{\left/ {\vphantom {{Bq} {{m^3}}}} \right. \\} {{m^3}}}\) )—in the inner chambers of a sample of 12 tombs are listed in the table shown below. For the safety of the guards and visitors, the Egypt Tourism Authority (ETA) will temporarily close the tombs if the true mean level of radon exposure in the tombs rises to 6,000\({{Bq} \mathord{\left/ {\vphantom {{Bq} {{m^3}}}} \right. \\} {{m^3}}}\) . Consequently, the ETA wants to conduct a test to determine if the true mean level of radon exposure in the tombs is less than 6,000\({{Bq} \mathord{\left/ {\vphantom {{Bq} {{m^3}}}} \right. \\} {{m^3}}}\) , using a Type I error probability of .10. An SPSS analysis of the data is shown at the bottom of the page. Specify all the elements of the test: \({H_0}\,,{H_a}\) test statistic, p-value,\(\alpha \) , and your conclusion.

50 910 180 580 7800 4000 390 12100 3400 1300 11900 110

Stability of compounds in new drugs. Refer to the ACS Medicinal Chemistry Letters (Vol. 1, 2010) study of the metabolic stability of drugs, Exercise 2.22 (p. 83). Recall that two important values computed from the testing phase are the fraction of compound unbound to plasma (fup) and the fraction of compound unbound to microsomes (fumic). A key formula for assessing stability assumes that the fup/fumic ratio is 1:1. Pharmacologists at Pfizer Global Research and Development tested 416 drugs and reported the fup/fumic ratio for each. These data are saved in the FUP file, and summary statistics are provided in the accompanying Minitab printout. Suppose the pharmacologists want to determine if the true mean ratio, μ, differs from 1.

a. Specify the null and alternative hypotheses for this test.

b. Descriptive statistics for the sample ratios are provided in the Minitab printout on page 410. Note that the sample mean,\(\overline x = .327\)is less than 1. Consequently, a pharmacologist wants to reject the null hypothesis. What are the problems with using such a decision rule?

c. Locate values of the test statistic and corresponding p-value on the printout.

d. Select a value of\(\alpha \)the probability of a Type I error. Interpret this value in the words of the problem.

e. Give the appropriate conclusion based on the results of parts c and d.

f. What conditions must be satisfied for the test results to be valid?

Which hypothesis, the null or the alternative, is the status-quo hypothesis? Which is the research hypothesis?

Oxygen bubble velocity in a purification process. Refer to the Chemical Engineering Research and Design (March 2013) study of a method of purifying nuclear fuel waste, Exercise 6.35 (p. 349). Recall that the process involves oxidation in molten salt and tends to produce oxygen bubbles with a rising velocity. To monitor the process, the researchers collected data on bubble velocity (measured in meters per second) for a random sample of 25 photographic bubble images. These data (simulated) are reproduced in the accompanying table. When oxygen is inserted into the molten salt at a rate (called the sparging rate) of \(3.33 \times {10^{ - 6}}\) , the researchers discovered that the true mean bubble rising velocity \(\mu = .338\)

a. Conduct a test of hypothesis to determine if the true mean bubble rising velocity for the population from which the sample is selected is\(\mu = .338\)Use\(\alpha = .10\).

0.275 0.261 0.209 0.266 0.265 0.312 0.285 0.317 0.229 0.251 0.256 0.339 0.213 0.178 0.217 0.307 0.264 0.319 0.298 0.169 0.342 0.270 0.262 0.228 0.22

Producer's and consumer's risk. In quality-control applications of hypothesis testing, the null and alternative hypotheses are frequently specified as\({H_0}\)The production process is performing satisfactorily. \({H_a}\): The process is performing in an unsatisfactory manner. Accordingly, \(\alpha \) is sometimes referred to as the producer's risk, while \(\beta \)is called the consumer's risk (Stevenson, Operations Management, 2014). An injection molder produces plastic golf tees. The process is designed to produce tees with a mean weight of .250 ounce. To investigate whether the injection molder is operating satisfactorily 40 tees were randomly sampled from the last hour's production. Their weights (in ounces) are listed in the following table.

a. Write \({H_0}\) and \({H_a}\) in terms of the true mean weight of the golf tees, \(\mu \).

b. Access the data and find \(\overline x \)and s.

c. Calculate the test statistic.

d. Find the p-value for the test.

e. Locate the rejection region for the test using\({H_a} = 0.01\).

f. Do the data provide sufficient evidence to conclude that the process is not operating satisfactorily?

g. In the context of this problem, explain why it makes sense to call \(\alpha \)the producer's risk and \(\beta \)the consumer's risk.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free