Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

“Streaming” of television programs is trending upward. According to The Harris Poll (August 26, 2013), over one-third of American’s qualify as “subscription streamers,” i.e., those who watch streamed TV programs through a subscription service such as Netflix, Hulu Plus, or Amazon Prime. The poll included 2,242 adult TV viewers, of which 785 are subscription streamers. On the basis of this result, can you conclude that the true fraction of adult TV viewers who are subscription streamers differs from one-third? Carry out the test using a Type I error rate of α=.10. Be sure to give the null and alternative hypotheses tested, test statistic value, rejection region or p-value, and conclusion.

Short Answer

Expert verified

At a 10% significance level, we have sufficient evidence to conclude that the true fraction of adult TV viewers who are subscription streamers differs from one-third.

Step by step solution

01

Given information

As per the Harris Poll, out of 2242 adult TV viewers surveyed, 785 are subscription streamers.

That is

The size of the samplen=2242

The sample proportion is

p^=7852242=0.350

02

Setting up the hypotheses

We have to test whether the true fraction of adult TV viewers who are subscription streamers differs from one-third.

As per the scenario, the null and alternative hypothesis is

H0:p=13=0.3333

That is, the true fraction of adult TV viewers who are subscription streamers does not differ from one-third.

And

Ha:p13

That is, the true fraction of adult TV viewers who are subscription streamers differs from one-third.

03

 Step 3: Calculating test statistic value

The test statistic for testing these hypotheses is given as

Z=p^-pp1-pn=0.350-0.33330.33331-0.33332242=0.01670.000099113=1.68

04

Calculating the p-value

We have Z=1.68, and the test is two-tailed (as an alternative hypothesis is two-tailed)

Therefore p-value in this scenario is

localid="1668671294086" p-value=2×PZ>Z0=2×PZ>1.68=2×0.0465.....usingstandardnormaltable=0.0930

05

Conclusion using p-value

We can see that

p-value=0.0930<0.10

That is, the obtained p-value is less than the significance level.

Hence, we reject the null hypothesis.

Conclusion:

At a 10% significance level, we have sufficient evidence to conclude that the true fraction of adult TV viewers who are subscription streamers differs from one-third.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Play Golf America program. The Professional Golf Association (PGA) and Golf Digest have developed the Play Golf America program, in which teaching professionals at participating golf clubs provide a free 10-minute lesson to new customers. According to Golf Digest, golf facilities that participate in the program gain, on average, \(2,400 in greens fees, lessons, or equipment expenditures. A teaching professional at a golf club believes that the average gain in greens fees, lessons, or equipment expenditures for participating golf facilities exceeds \)2,400.

a. In order to support the claim made by the teaching professional, what null and alternative hypotheses should you test?

b. Suppose you selectα = 0.05. Interpret this value in the words of the problem.

c. For α = 0.05, specify the rejection region of a large sample test.

Which hypothesis, the null or the alternative, is the status-quo hypothesis? Which is the research hypothesis?

Coffee markets that conform to organic standards focus on the environmental aspects of coffee growing, such as the use of shade trees and a reduced reliance on chemical pesticides. A study of organic coffee growers was published in Food Policy (Vol. 36, 2010). In a representative sample of 845 coffee growers from southern Mexico, 417 growers were certified to sell to organic coffee markets while 77 growers were transitioning to become organic certified. In the United States, 60% of coffee growers are organic certified. Is there evidence to indicate that fewer than 60% of the coffee growers in southern Mexico are either organic certified or transitioning to become organic certified? State your conclusion so that there is only a 5% chance of making a Type I error.

Question: Testing the placebo effect. The placebo effect describes the phenomenon of improvement in the condition of a patient taking a placebo—a pill that looks and tastes real but contains no medically active chemicals. Physicians at a clinic in La Jolla, California, gave what they thought were drugs to 7,000 asthma, ulcer, and herpes patients. Although the doctors later learned that the drugs were really placebos, 70% of the patients reported an improved condition. Use this information to test (at α = 0.05) the placebo effect at the clinic. Assume that if the placebo is ineffective, the probability of a patient’s condition improving is 0.5.

Producer's and consumer's risk. In quality-control applications of hypothesis testing, the null and alternative hypotheses are frequently specified as\({H_0}\)The production process is performing satisfactorily. \({H_a}\): The process is performing in an unsatisfactory manner. Accordingly, \(\alpha \) is sometimes referred to as the producer's risk, while \(\beta \)is called the consumer's risk (Stevenson, Operations Management, 2014). An injection molder produces plastic golf tees. The process is designed to produce tees with a mean weight of .250 ounce. To investigate whether the injection molder is operating satisfactorily 40 tees were randomly sampled from the last hour's production. Their weights (in ounces) are listed in the following table.

a. Write \({H_0}\) and \({H_a}\) in terms of the true mean weight of the golf tees, \(\mu \).

b. Access the data and find \(\overline x \)and s.

c. Calculate the test statistic.

d. Find the p-value for the test.

e. Locate the rejection region for the test using\({H_a} = 0.01\).

f. Do the data provide sufficient evidence to conclude that the process is not operating satisfactorily?

g. In the context of this problem, explain why it makes sense to call \(\alpha \)the producer's risk and \(\beta \)the consumer's risk.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free