Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A two-tailed test was conducted with the null and alternative hypotheses stated being \({H_0}:p = .69\) against \({H_a}:p \ne .69\), respectively, with a sample size of 150. The test results were z = -.98 and two-tailed p-value = .327

a. Determine the conditions required for a valid large sample test

Short Answer

Expert verified
  1. The sample is drawn from a binomial population. The sample size is large. These conditions are required for a valid large sample test.

Step by step solution

01

Given Information

The hypothesis are given by

\(\begin{aligned}{H_0}:p = .69\\{H_a}:p \ne .69\end{aligned}\)

The z-statistic is -.98..

The p-value is .327

02

Calculate np and nq

For \(n = 150\,and\,p = .69\)

\(\begin{aligned}np &= 150 \times 0.69\\ &= 103.5\\nq &= 150 \times 0.31\\ &= 46.5\end{aligned}\)

Here, np and nq both are greater than 15.

03

Step 3:

The sample is drawn from a binomial population. The sample size is large. These conditions are required for a valid large sample test.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Companies that produce candies typically offer different colors of their candies to provide consumers a choice. Presumably, the consumer will choose one color over another because of taste. Chance (Winter 2010) presented an experiment designed to test this taste theory. Students were blindfolded and then given a red or yellow Gummi Bear to chew. (Half the students were randomly assigned to receive the red Gummi Bear and half to receive the yellow Bear. The students could not see what color Gummi Bear they were given.) After chewing, the students were asked to guess the color of the candy based on the flavor. Of the 121 students who participated in the study, 97 correctly identified the color of the Gummi Bear.

a. If there is no relationship between color and Gummi Bear flavor, what proportion of the population of students would correctly identify the color?

b. Specify the null and alternative hypotheses for testing whether color and flavor are ฮฑ=.01related.

c. Carry out the test and give the appropriate conclusion at Use the p-value of the test, shown on the accompanying SPSS printout, to make your decision.

Customer participation in-store loyalty card programs. Refer to the Pew Internet & American Life Project Survey (January 2016) study of 250 store customers and their participation in a store loyalty card program, Exercise 7.69 (p. 425). Recall that a store owner claimed that more than 80% of all customers would participate in a loyalty card program. You conducted a test of H0: p = .8 versus Ha: p 7 .8 using a = 01. What is the probability that the test results will support the claim if the true percentage of customers who would participate in a loyalty card program is 79%?

For safety reasons, calf dehorning has become a routine practice at dairy farms. A report by Europeโ€™s Standing Committee on the Food Chain and Animal Health (SANKO) stated that 80% of European dairy farms carry out calf dehorning. A later study, published in the Journal of Dairy Science (Vol. 94,2011), found that in a sample of 639 Italian dairy farms, 515 dehorned calves. Does the Journal of Dairy Science study support or refute the figure reported by SANKO? Explain.

Refer to Exercise 6.44 (p. 356), in which 50 consumers taste-tested a new snack food. Their responses (where 0 = do not like; 1 = like; 2 = indifferent) are reproduced below

  1. Test \({H_0}:p = .5\) against \({H_0}:p > .5\), where p is the proportion of customers who do not like the snack food. Use \(\alpha = 0.10\).
    1 0 0 1 2 0 1 1 0 0 0 1 0 2 0 2 2 0 0 1 1 0 0 0 0 1 0 2 0 0 0 1 0 0 1 0 0 1 0 1 0 2 0 0 1 1 0 0 0 1

Latex allergy in health care workers. Refer to the Current Allergy & Clinical Immunology (March 2004) study of n = 46 hospital employees who were diagnosed with a latex allergy from exposure to the powder on latex gloves, Exercise 6.112 (p. 375). The number of latex gloves used per week by the sampled workers is summarized as follows: \(\bar x = 19.3\) and s = 11.9. Let \(\mu \) represent the mean number of latex gloves used per week by all hospital employees. Consider testing \({H_0}:\mu = 20\) against \({H_a}:\mu < 20.\)

a. Give the rejection region for the test at a significance level of \(\alpha = 0.01.\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free