Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Shopping vehicle and judgment. Refer to the Journal of Marketing Research (December 2011) study of grocery store shoppers’ judgments, Exercise 2.85 (p. 112). For one part of the study, 11 consumers were told to put their arm in a flex position (similar to carrying a shopping basket) and then each consumer was offered several choices between a vice product and a virtue product (e.g., a movie ticket vs. a shopping coupon, pay later with a larger amount vs. pay now). Based on these choices, a vice choice score was determined on a scale of 0 to 100 (where higher scores indicate a greater preference for vice options). The data in the next table are (simulated) choice scores for the 11 consumers. Suppose that the average choice score for consumers with an extended arm position (similar to pushing a shopping cart) is known to be \(\mu = 50\) . The researchers theorize that the mean choice score for consumers shopping with a flexed arm will be higher than 43 (reflecting their higher propensity to select a vice product) Test the theory at \(\alpha = 0.05\)

Short Answer

Expert verified

We fail to reject the null hypothesis.

Step by step solution

01

Given Information

The sample size is 11.

The hypothesis are given by

\(\begin{aligned}{l}{H_0}:{\mu _0} = 43\\{H_a}:{\mu _0} > 43\end{aligned}\)

The mean is given by 50

02

Compute standard deviation

The standard deviation is calculated as

\(\begin{aligned}sd &= \sqrt {\frac{{\sum\limits_{i = 1}^n {{{({X_i} - \bar X)}^2}} }}{{n - 1}}} \\ &= \sqrt {\frac{{36 + 676 + 144 + 49 + 25 + 121 + 144 + 49 + 49 + 121}}{{10}}} \\ &= \sqrt {\frac{{1414}}{{10}}} \\ &= \sqrt {141.4} \\ &= 11.89\end{aligned}\)

Therefore, the standard deviation is 11.89.

03

Test statistic

The test statistic is computed as

\(\begin{aligned}t &= \frac{{\bar x - {\mu _0}}}{{\frac{s}{{\sqrt n }}}}\\ &= \frac{{50 - 43}}{{\frac{{11.89}}{{\sqrt {11} }}}}\\ &= \frac{7}{{3.584}}\\ &= 1.95\end{aligned}\)

Therefore, the test statistic is 1.95.

04

Conclusion

For,\(\alpha = 0.05\,\,and\,n - 1 = 10\)

\(\begin{aligned}{t_{\alpha ,n - 1}} &= {t_{0.05,10}}\\ &= 1.812\end{aligned}\)

The calculated value is greater than tabulated value.

Therefore, we fail to reject the null hypothesis.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

“Made in the USA” survey. Refer to the Journal of Global Business (Spring 2002) study of what “Made in the USA” means to consumers, Exercise 2.154 (p. 143). Recall that 64 of 106 randomly selected shoppers believed “Made in the USA” means 100% of labor and materials are from the United States. Let p represent the true proportion of consumers who believe “Made in the USA” means 100% of labor and materials are from the United States.

a. Calculate a point estimate for p.

Refer to Exercise 7.99.

a. Find b for each of the following values of the population mean: 74, 72, 70, 68, and 66.

b. Plot each value of b you obtained in part a against its associated population mean. Show b on the vertical axis and m on the horizontal axis. Draw a curve through the five points on your graph.

c. Use your graph of part b to find the approximate probability that the hypothesis test will lead to a Type II error when m = 73.

d. Convert each of the b values you calculated in part a to the power of the test at the specified value of m. Plot the power on the vertical axis against m on the horizontal axis. Compare the graph of part b with the power curve of this part.

e. Examine the graphs of parts b and d. Explain what they reveal about the relationships among the distance between the true mean m and the null hypothesized mean m0, the value of b, and the power.

If a hypothesis test were conducted using α= 0.05, for which of the following p-values would the null hypothesis be rejected?

a. .06

b. .10

c. .01

d. .001

e. .251

f. .042

Customer participation in-store loyalty card programs. Refer to the Pew Internet & American Life Project Survey (January 2016) study of 250 store customers and their participation in a store loyalty card program, Exercise 7.69 (p. 425). Recall that a store owner claimed that more than 80% of all customers would participate in a loyalty card program. You conducted a test of H0: p = .8 versus Ha: p 7 .8 using a = 01. What is the probability that the test results will support the claim if the true percentage of customers who would participate in a loyalty card program is 79%?

Americans’ favorite sport. The Harris Poll (December 2013) conducted an online survey of American adults to determine their favorite sport. Your friend believes professional (National Football League [NFL]) football—with revenue of about $13 billion per year—is the favorite sport for 40% of American adults. Specify the null and alternative hypotheses for testing this belief. Be sure to identify the parameter of interest.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free