Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Performance of stock screeners. Recall, from Exercise 6.36 (p. 350), that stock screeners are automated tools used by investment companies to help clients select a portfolio of stocks to invest in. The data on the annualized percentage return on investment (as compared to the Standard & Poor’s 500 Index) for 13 randomly selected stock screeners provided by the American Association of Individual Investors (AAII) are repeated in the accompanying table. You want to determine whether \(\mu \) , the average annualized return for all AAII stock screeners, is positive (which implies that the stock screeners perform better, on average, than the S&P 500). An XLSTAT printout of the analysis is shown on the top of page 418.

9.0 -.1 -1.6 14.6 16.0 7.7 19.9 9.8 3.2 24.8 17.6 10.7 9.1

  1. State \({H_0}\,and\,{H_a}\) for this test

Short Answer

Expert verified
  1. \(\begin{aligned}{H_0}:\mu = 0\\{H_a}:\mu > 0\end{aligned}\)

Step by step solution

01

Given Information

The sample size is 13.

\(\mu \) be the average annualized return for screeners.

02

Specifying the null hypothesis

The null hypothesis is given by,

\({H_0}:\mu = 0\)

03

Specifying the alternative hypothesis

The alternative hypothesis is given by,

\({H_a}:\mu > 0\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Solder-joint inspections. Current technology uses high-resolution X-rays and lasers to inspect solder-joint defects on printed circuit boards (PCBs) (Global SMT & Packaging, April 2008). A particular manufacturer of laser-based inspection equipment claims that its product can inspect, on average, at least 10 solder joints per second when the joints are spaced .1 inch apart. The equipment was tested by a potential buyer on 48 different PCBs. In each case, the equipment was operated for exactly 1 second. The number of solder joints inspected on each run follows:

The potential buyer wants to know whether the sample data refute the manufacturer’s claim. Specify the null and alternative hypotheses that the buyer should test.

Stability of compounds in new drugs. Refer to the ACS Medicinal Chemistry Letters (Vol. 1, 2010) study of the metabolic stability of drugs, Exercise 2.22 (p. 83). Recall that two important values computed from the testing phase are the fraction of compound unbound to plasma (fup) and the fraction of compound unbound to microsomes (fumic). A key formula for assessing stability assumes that the fup/fumic ratio is 1:1. Pharmacologists at Pfizer Global Research and Development tested 416 drugs and reported the fup/fumic ratio for each. These data are saved in the FUP file, and summary statistics are provided in the accompanying Minitab printout. Suppose the pharmacologists want to determine if the true mean ratio, μ, differs from 1.

a. Specify the null and alternative hypotheses for this test.

b. Descriptive statistics for the sample ratios are provided in the Minitab printout on page 410. Note that the sample mean,\(\overline x = .327\)is less than 1. Consequently, a pharmacologist wants to reject the null hypothesis. What are the problems with using such a decision rule?

c. Locate values of the test statistic and corresponding p-value on the printout.

d. Select a value of\(\alpha \)the probability of a Type I error. Interpret this value in the words of the problem.

e. Give the appropriate conclusion based on the results of parts c and d.

f. What conditions must be satisfied for the test results to be valid?

A random sample of 175 measurements possessed a mean x¯=8.2 and a standard deviation s = .79.

a. Test H0:μ=8.3 against Ha:μ8.3Use a=0.05

Student loan default rate. The national student loan default rate has fluctuated over the past several years. Recently (October 2015) the Department of Education reported the default rate (i.e., the proportion of college students who default on their loans) at 0.12. Set up the null and alternative hypotheses if you want to determine if the student loan default rate this year is less than 0.12.
The testing claimed by the national student loan default rate is the test for a specified proportion.

Minimizing tractor skidding distance. Refer to the Journal of Forest Engineering (July 1999) study of minimizing tractor skidding distances along a new road in a European forest, Exercise 6.37 (p. 350). The skidding distances (in meters) were measured at 20 randomly selected road sites. The data are repeated below. Recall that a logger working on the road claims the mean skidding distance is at least 425 meters. Is there sufficient evidence to refute this claim? Use \(\alpha = .10\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free