Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In a test of \({H_0}:\mu = 100\) against \({H_a}:\mu \ne 100\), the sample data yielded the test statistic z = 2.17. Find the p-value for the test.

Short Answer

Expert verified

The p-value for the hypothesis test is 0.030.

Step by step solution

01

Given information

The hypothesis test is:\({H_0}:\mu = 100\)versus\({H_a}:\mu \ne 100\).

The test statistic is \(z = 2.17\).

02

Computing the p-value

The p-value for the two-tailed test is:

\(\begin{aligned}p &= 2P\left( {Z > 2.17} \right)\\ &= 2\left( {1 - P\left( {Z \le 2.17} \right)} \right)\\ &= 2 \times \left( {1 - 0.9850} \right)\\ &= 2 \times 0.0150\\ &= 0.030\end{aligned}\).

The probability of a z-score less than or equal to 2.17 is obtained from the z-table.

Hence the p-value is 0.030.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Intrusion detection systems. The Journal of Research of the National Institute of Standards and Technology (November– December 2003) published a study of a computer intrusion detection system (IDS). The IDS is designed to provide an alarm whenever unauthorized access (e.g., an intrusion) to a computer system occurs. The probability of the system giving a false alarm (i.e., providing a warning when no intrusion occurs) is defined by the symbol α, while the probability of a missed detection (i.e., no warning given when an intrusion occurs) is defined by the symbol β. These symbols are used to represent Type I and Type II error rates, respectively, in a hypothesis-testing scenario

a. What is the null hypothesis, H0?

b. What is the alternative hypothesis,Ha?

c. According to actual data collected by the Massachusetts Institute of Technology Lincoln Laboratory, only 1 in 1,000 computer sessions with no intrusions resulted in a false alarm. For the same system, the laboratory found that only 500 of 1,000 intrusions were actually detected. Use this information to estimate the values of αand β.

Trading skills of institutional investors. Refer to The Journal of Finance (April 2011) analysis of trading skills of institutional investors, Exercise 7.36 (p. 410). Recall that the study focused on “round-trip” trades, i.e., trades in which the same stock was both bought and sold in the same quarter. In a random sample of 200 round-trip trades made by institutional investors, the sample standard deviation of the rates of return was 8.82%. One property of a consistent performance of institutional investors is a small variance in the rates of return of round-trip trades, say, a standard deviation of less than 10%.

a. Specify the null and alternative hypotheses for determining whether the population of institutional investors performs consistently.

b. Find the rejection region for the test usingα=.05

c. Interpret the value of in the words of the problem.

d. A Minitab printout of the analysis is shown (next column). Locate the test statistic andp-value on the printout.

e. Give the appropriate conclusion in the words of the problem.

f. What assumptions about the data are required for the inference to be valid?


Consider the test \({H_0}:\mu = 70\) versus \({H_a}:\mu \ne 70\) using a large sample of size n = 400. Assume\(\sigma = 20\).

a. Describe the sampling distribution of\(\bar x\).

b. Find the value of the test statistic if\(\bar x = 72.5\).

c. Refer to part b. Find the p-value of the test.

d. Find the rejection region of the test for\(\alpha = 0.01\).

e. Refer to parts c and d. Use the p-value approach to

make the appropriate conclusion.

f. Repeat part e, but use the rejection region approach.

g. Do the conclusions, parts e and f, agree?

For each of the following rejection regions, sketch the sampling distribution for z and indicate the location of the rejection region.

a. \({H_0}:\mu \le {\mu _0}\) and \({H_a}:\mu > {\mu _0};\alpha = 0.1\)

b. \({H_0}:\mu \le {\mu _0}\) and \({H_a}:\mu > {\mu _0};\alpha = 0.05\)

c. \({H_0}:\mu \ge {\mu _0}\) and \({H_a}:\mu < {\mu _0};\alpha = 0.01\)

d. \({H_0}:\mu = {\mu _0}\) and \({H_a}:\mu \ne {\mu _0};\alpha = 0.05\)

e. \({H_0}:\mu = {\mu _0}\) and \({H_a}:\mu \ne {\mu _0};\alpha = 0.1\)

f. \({H_0}:\mu = {\mu _0}\) and \({H_a}:\mu \ne {\mu _0};\alpha = 0.01\)

g. For each rejection region specified in parts a–f, state the probability notation in z and its respective Type I error value.

Refer to Exercise 7.99.

a. Find b for each of the following values of the population mean: 74, 72, 70, 68, and 66.

b. Plot each value of b you obtained in part a against its associated population mean. Show b on the vertical axis and m on the horizontal axis. Draw a curve through the five points on your graph.

c. Use your graph of part b to find the approximate probability that the hypothesis test will lead to a Type II error when m = 73.

d. Convert each of the b values you calculated in part a to the power of the test at the specified value of m. Plot the power on the vertical axis against m on the horizontal axis. Compare the graph of part b with the power curve of this part.

e. Examine the graphs of parts b and d. Explain what they reveal about the relationships among the distance between the true mean m and the null hypothesized mean m0, the value of b, and the power.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free