Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A random sample of 175 measurements possessed a mean x¯=8.2 and a standard deviation s = .79.

a. Test H0:μ=8.3 against Ha:μ8.3Use a=0.05

Short Answer

Expert verified

⦁ The Z-statistic does not fall into the rejection region. So, we fail to reject the

null hypothesis.

Step by step solution

01

Given Information

The sample size, n=175

The mean,x¯=8.2

The standard deviation, s=0.79

02

State the concept used in the test.

The statistical hypothesis test is used here. A statistical hypothesis is a statement about the numerical value of a population parameter.

03

Compute the hypothesis test H0:μ=8.3 against Ha:μ≠8.3 at the significance level a=0.05 

The null and alternative hypothesis are:

H0:μ=8.3Ha:μ8.3

The significance level,a=0.05

The test statistic is computed as:

Z=x¯-μs/n=8.2-8.30.79/175=-0.10.0597=-1.675

This is a two-tailed test. So, the Za2 obtained from the standard normal table is 1.96.

Here, z<za2-1.675<1.96. So, we fail to reject the null hypothesis.

Hence, the Z-statistic does not fall into the rejection region. So, we fail to reject the null hypothesis.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A random sample of 64 observations produced the following summary statistics: \(\bar x = 0.323\) and \({s^2} = 0.034\).

a. Test the null hypothesis that\(\mu = 0.36\)against the alternative hypothesis that\(\mu < 0.36\)using\(\alpha = 0.10\).

b. Test the null hypothesis that \(\mu = 0.36\) against the alternative hypothesis that \(\mu \ne 0.36\) using \(\alpha = 0.10\). Interpret the result.

a.Consider testing H0: m=80. Under what conditions should you use the t-distribution to conduct the test?

b.In what ways are the distributions of the z-statistic and t-test statistic alike? How do they differ?

What is the difference between Type I and Type II errors in hypothesis testing? How do α and β relate to Type I and Type II errors?

Hotels’ use of ecolabels. Refer to the Journal of Vacation Marketing (January 2016) study of travelers’ familiarity with ecolabels used by hotels, Exercise 2.64 (p. 104). Recall that adult travelers were shown a list of 6 different ecolabels, and asked, “Suppose the response is measured on a continuous scale from 10 (not familiar at all) to 50 (very familiar).” The mean and standard deviation for the Energy Star ecolabel are 44 and 1.5, respectively. Assume the distribution of the responses is approximately normally distributed.

a. Find the probability that a response to Energy Star exceeds 43.

b. Find the probability that a response to Energy Star falls between 42 and 45. c. If you observe a response of 35 to an ecolabel, do you think it is likely that the ecolabel was Energy Star? Explain.

Suppose you are interested in conducting the statistical test of \({H_0}:\mu = 255\) against \({H_a}:\mu > 225\), and you have decided to use the following decision rule: Reject H0 if the sample mean of a random sample of 81 items is more than 270. Assume that the standard deviation of the population is 63.

a. Express the decision rule in terms of z.

b. Find \(\alpha \), the probability of making a Type I error by using this decision rule.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free