Chapter 8: Problem 11
Suppose that we wish to construct the likelihood ratio statistic for comparison of the two linear models \(y=X_{1} \beta_{1}+\varepsilon\) and \(y=X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon\), where the components of \(\varepsilon\) are independent normal variables with mean zero and variance \(\sigma^{2} ;\) call the corresponding residual sums of squares \(S S_{1}\) and \(S S\) on \(v_{1}\) and \(v\) degrees of freedom. (a) Show that the maximum value of the log likelihood is \(-\frac{1}{2} n(\log S S+1-\log n)\) for a model whose residual sum of squares is \(S S\), and deduce that the likelihood ratio statistic for comparison of the models above is \(W=n \log \left(S S_{1} / S S\right)\). (b) By writing \(S S_{1}=S S+\left(S S_{1}-S S\right)\), show that \(W\) is a monotonic function of the \(F\) statistic for comparison of the models. (c) Show that \(W \doteq\left(v_{1}-v\right) F\) when \(n\) is large and \(v\) is close to \(n\), and say why \(F\) would usually be preferred to \(W\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.